High Cycle Stability of Post-Pinel Compound NaMn2O4 as Cathode of Sodium Ion Battery

尖晶石 电化学 锂(药物) 电池(电) 阴极 材料科学 相(物质) 电极 分析化学(期刊) 化学工程 化学 冶金 物理化学 热力学 功率(物理) 有机化学 内分泌学 工程类 物理 医学 色谱法
作者
Xizheng Liu,Akira Iyo,Haoshen Zhou
出处
期刊:Meeting abstracts 卷期号:MA2014-04 (2): 316-316
标识
DOI:10.1149/ma2014-04/2/316
摘要

1. Introduction Room temperature sodium ion batteries (SIB) have been drawing increasing attentions as potential energy storage devices instead of the normally used lithium ion batteries (LIB) due to its advantages of low cost and unlimited sodium resources [1-2]. Design and synthesis of electrode materials for SIB which can meet commercial standard still challenge the materials scientists. Inspired by the material design and development of LIB, popular electrode materials of LIB have been used as SIB electrode by a electrochemical or chemical Li-Na exchange [3]. Manganese-based materials spinel-type LiMn 2 O 4 is widely used in present large-scale LIB because well electrochemical performance and elemental abundance in the Earth. However, the spinel-type NaMn 2 O 4 is a thermodynamically unstable phase and can not be synthesized directly. Electrochemical desertion of Li and followed by an insertion of Na from LiMn2O4 have been investigated in SIB, but a poor cycle performance and structure rearrangement have been reported [4]. Herein, we synthesized a post-spinel structure NaMn 2 O 4 by a high pressure technique and discussed the potential applications as cathode materials for SIB. 2. Experiments The NaMn 2 O 4 was synthesized using a high-pressure technique. The mixture of Na 2 O 2 and Mn 2 O 3 (with a 5% excess of Na 2 O 2 ) were sealed in a Au-capsule and heated at 1223 K under a pressure of 4.5 GPa for 1 hour. The synthesized samples was washed by water and post-heated at 623 K for 5 hours. The structure and morphology have been characterized by XRD, SEM and TEM. Electrodes were fabricated using NaMn 2 O 4 , acetylene black and PTFE in a mass ratio of 6:3:1. Coin cells consists by a NaMn 2 O 4 cathode, sodium metal anode and NaPF6 electrolyte. 3. Results and discussion Fig.1 XRD pattern (a); SEM images (b); HRTEM (c) and selected charge/discharge profiles at the voltage range of 2.0-4.0 V. The XRD patterns of NaMn 2 O 4 is shown in Fig. 1a. All peaks can be index as the previously known orthorhombic structure with a space group of Pnma . No impurities and secondary phase can be found. It showed a rod-like morphology with a diameter of about 100 nm and a length of 3-5 μm as shown in Fig. 1b. The detailed crystal structure of as prepared NaMn 2 O 4 have also been studied by HRTEM and showed in Fig. 1c. The inner figure of 1c is the structure view of post-spinel NaMn 2 O 4 . The 1D tunnels which are surrounded by double rutile chains of Mn 2 O 4 are filled with sodium ions. Sodium ions in the post-spinel structures occupied the sites much larger than that of the Li ions in spine LiMn 2 O 4 . Materials with this structure characteristic provide a potentials of reversible sodium ion insertion/desertion with easy ion diffusion and stable framework host. First-principles calculation results showed that this compound is stable at ambient conditions and a high mobility of Na+ in post-spinel phase [5]. Fig. 1d showed the selected charge/discharge profiles at a voltage range of 2.0-4.0 V. It is interesting to note that the superior cycle stability of both charge/discharge capacities and voltages profiles. The stable charge/discharge plateaus at about 3 V (vs. Na+/Na) which can be attributed to the redox reaction of Mn 4+ /Mn 3+ . Different from other NaMnxOy compounds, this compound showed that it has a relatively stable structure, sub-plateaus can rarely be founded during charge/discharge processes. As we know, the LiMn 2 O 4 electrode suffered a serious capacity fading when cycled at a temperature higher than 55 °C. The main explanations for this is the Jahn-Teller effects of Mn 3+ and dissolution of Mn 2+ from the cathode materials. Researchers also endeavored to improve the high temperature performance of Mn-base materials by many ways. We also investigated the cycle performance of this post-spinel NaMn 2 O 4 at 55 °C. A very stable cycle performance at 55 °C have been obtained. The reasons for the superior stability both at room temperature and 55 °C are the large barrier to rearrange Mn ion in this post-spinel structure. The detailed electrochemical performance and relations with structures will be presented at the conference. Reference [1] R. Berthelot, D. Carlier, C. Delmas, Nature Mater. 10 (2011) 74-80 [2] V. Palomares, M. Casas-Cabanas, E. Castillo-Martinez, M. H. Han, T. Rojo, Energy Environ. Sci. 6 (2013) 2312-2337 [3] H. Pan, Y. Hu, L. Chen, Energy Environ. Sci. 6 (2013) 2338-2360 [4] N. Yabuuchi, M. Yano, S. Kuze, S. Komaba, Electrochimica Acta, 82 (2012) 296-301 [5] C. Ling, F. Mizuno, Chem. Mater. 25 (2013) 3062-3071

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
1秒前
2秒前
热情醉冬完成签到,获得积分10
4秒前
yydragen应助qq采纳,获得30
4秒前
归尘发布了新的文献求助10
4秒前
吨吨完成签到,获得积分10
6秒前
小白菜完成签到 ,获得积分10
7秒前
张雯思发布了新的文献求助10
7秒前
DNAdamage完成签到,获得积分10
7秒前
Abby完成签到,获得积分20
7秒前
8秒前
NexusExplorer应助憨憨采纳,获得10
8秒前
上官若男应助开心的西瓜采纳,获得10
8秒前
8秒前
9秒前
9秒前
12秒前
bjtuBTBT完成签到,获得积分10
13秒前
14秒前
ss发布了新的文献求助30
14秒前
塞西尔完成签到,获得积分10
14秒前
田様应助芭拉芭拉叭采纳,获得10
14秒前
科研通AI5应助杜兰特采纳,获得10
15秒前
beta发布了新的文献求助10
16秒前
16秒前
16秒前
贪玩访文发布了新的文献求助10
16秒前
科研通AI5应助仙都丽娜采纳,获得10
17秒前
cx完成签到,获得积分10
18秒前
华仔应助俭朴的一曲采纳,获得10
18秒前
丘比特应助唠叨的似狮采纳,获得10
18秒前
18秒前
张北海应助谦让含玉采纳,获得20
19秒前
温拟发布了新的文献求助10
19秒前
全若之发布了新的文献求助10
19秒前
晴烟ZYM发布了新的文献求助30
20秒前
inin驳回了田様应助
20秒前
20秒前
甜甜玫瑰应助游一采纳,获得10
20秒前
mike完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992229
求助须知:如何正确求助?哪些是违规求助? 3533231
关于积分的说明 11261619
捐赠科研通 3272656
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882720
科研通“疑难数据库(出版商)”最低求助积分说明 809452