化学
拉曼散射
基质(水族馆)
检出限
分析物
银纳米粒子
拉曼光谱
纳米颗粒
分析化学(期刊)
纳米探针
纳米技术
色谱法
材料科学
海洋学
物理
光学
地质学
作者
Zhongwei Jiang,Pengfei Gao,Lin Yang,Cheng Zhi Huang,Yuan Fang Li
出处
期刊:Analytical Chemistry
[American Chemical Society]
日期:2015-12-03
卷期号:87 (24): 12177-12182
被引量:174
标识
DOI:10.1021/acs.analchem.5b03058
摘要
Surface-enhanced Raman scattering (SERS) signals are intensively dominated by the Raman hot spots and distance between analyte molecules and metallic nanostructures. Herein, an efficient SERS substrate was developed by in situ synthesis of silver nanoparticles (AgNPs) on the surface of MIL-101 (Fe), a typical metal–organic framework (MOF). The as-prepared SERS substrate combines the numerous Raman hot spots between the high-density Ag NPs and the excellent adsorption performance of MOFs, making it an excellent SERS substrate for highly sensitive SERS detection by effectively concentrating analytes in close proximity to the Raman hot spots domains between the adjacent AgNPs. The resulting hybrid material was used for ultrasensitive SERS detection of dopamine based on the peroxidase-like activity of MIL-101 (Fe) by utilizing the enzyme-linked immunosorbent assay (ELISA) colorimetric substrate, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as a SERS marker. This new developed method showed good linearity in the range from 1.054 pM to 210.8 nM for dopamine with the correlation coefficient of 0.992, detection limit of approximately 0.32 pM [signal-to-noise ratio (S/N) = 3], and acceptable recoveries ranging from 99.8% to 108.0% in human urine. These results predict that the proposed SERS system may open up a new opportunity for chemical and biological assay applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI