已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantitative risk analysis on leakage failure of submarine oil and gas pipelines using Bayesian network

管道运输 泄漏(经济) 管道(软件) 风险评估 诚信管理 计算机科学 石油工程 故障树分析 泄漏 人工神经网络 概率逻辑
作者
Xinhong Li,Guoming Chen,Hongwei Zhu
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:103: 163-173 被引量:133
标识
DOI:10.1016/j.psep.2016.06.006
摘要

Abstract Submarine pipeline is the major transportation way of subsea oil and gas production. Due to the internal and external factor, the failure probability of submarine pipeline is increasing, which could lead to the spill accidents of oil and gas. Efficient risk analysis is vital for preventing and mitigating such potential accident. This paper presents a risk-based accident model to conduct quantitative risk analysis (QRA) for leakage failure of submarine pipeline. Firstly, we employ bow-tie method to model the causal relationship between pipeline leakage and potential accident scenarios. Subsequently, in order to overcome the difficulties of bow-tie in modeling uncertainties and conditional dependency, a Bayesian network model for pipeline leakage is developed through mapping from the former bow-tie. Meanwhile, an object-oriented Bayesian network that has a smaller and more clarified structure is also constructed by modularizing the primary Bayesian network. Eventually, the probability updating is implemented in risk analysis using Bayesian network when a new evidence or observation occurs, and an experience learning from accident precursor data is also conducted through Bayesian approach. The proposed accident model based on Bayesian network can provide a more case-specific and realistic analysis consequence compared to bow-tie method, since it could consider the common cause failures and conditional dependency in accident evolution process of pipeline leakage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气莫茗发布了新的文献求助10
刚刚
jiang_tian完成签到,获得积分10
3秒前
Sunday完成签到 ,获得积分10
4秒前
多年以后完成签到,获得积分10
5秒前
木子完成签到,获得积分10
6秒前
义气莫茗完成签到,获得积分10
6秒前
雪白秋柔完成签到 ,获得积分10
7秒前
Ayuan发布了新的文献求助100
8秒前
开心的野狼完成签到 ,获得积分10
9秒前
Evan完成签到 ,获得积分10
9秒前
9秒前
10秒前
Tsingyuan完成签到,获得积分10
10秒前
12秒前
季1完成签到,获得积分10
14秒前
wangyr11发布了新的文献求助10
14秒前
16秒前
季1发布了新的文献求助30
16秒前
fsznc完成签到 ,获得积分0
17秒前
wang完成签到 ,获得积分10
17秒前
慕青应助cheunsor采纳,获得10
19秒前
19秒前
21秒前
decade发布了新的文献求助10
24秒前
jitanxiang发布了新的文献求助10
24秒前
小禾一定行完成签到 ,获得积分10
24秒前
Akim应助木子采纳,获得10
25秒前
26秒前
赘婿应助西1采纳,获得10
28秒前
sun发布了新的文献求助10
32秒前
勤劳的木木完成签到 ,获得积分10
34秒前
Samar完成签到 ,获得积分10
37秒前
FiroZhang完成签到,获得积分10
38秒前
十六应助甜蜜花采纳,获得20
40秒前
40秒前
小兵发布了新的文献求助10
42秒前
44秒前
46秒前
窦慕卉发布了新的文献求助10
47秒前
48秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491183
求助须知:如何正确求助?哪些是违规求助? 3077841
关于积分的说明 9150667
捐赠科研通 2770320
什么是DOI,文献DOI怎么找? 1520261
邀请新用户注册赠送积分活动 704543
科研通“疑难数据库(出版商)”最低求助积分说明 702221