多孔介质
有限元法
离散化
网格
流体力学
流量(数学)
比例(比率)
机械
宏观尺度
变形(气象学)
计算机科学
规则网格
断裂(地质)
地质学
多孔性
数学
岩土工程
工程类
结构工程
物理
几何学
数学分析
海洋学
量子力学
标识
DOI:10.1016/j.mechrescom.2016.05.004
摘要
Fluid flow in fractures that pre-exist or propagate in a porous medium can have a major influence on the deformation and flow characteristics. With the aim of carrying out large-scale calculations at reasonable computing costs, a sub-grid scale model has been developed. While this model was originally embedded in extended finite element methods, thereby exploiting some special properties of the enrichment functions, we will herein show that, using proper micro–macro relations, in particular for the mass balance, sub-grid scale models can be coupled to a range of discretisation methods at the macroscopic scale, from standard interface elements to isogeometric finite element analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI