力谱学
果胶
光谱学
纳米技术
化学
原子力显微镜
化学工程
多糖
生物高聚物
聚合物
材料科学
物理
食品科学
工程类
量子力学
作者
Victor J. Morris,A. Gromer,Andrew R. Kirby,Roy J. Bongaerts,A. Patrick Gunning
标识
DOI:10.1016/j.foodhyd.2009.11.015
摘要
Pectin is an integral component of non-graminaceous plant cell walls. It is believed to form an interconnected network structure independent of the cellulose-xyloglucan network structure. Pectin gels are often used as a model for the pectin network structure within the plant cell wall. Atomic force microscopy studies of calcium-induced gel precursors, and fragments released from gels, suggest that association leads to a branched fibrous structure within the gels. Enzymatic de-esterification of high-methoxyl pectin in the presence of calcium ions can induce gelation of the pectin. Thus pectin gel networks may provide a model for a self-assembled network structure within the middle lamella region of the plant cell wall. The pectin network in plant cell walls is a source of soluble and insoluble fibre. In addition to the health benefits associated with the dietary fibre aspects of pectin new health claims are emerging. Recently published in vitro and in vivo animal studies, and human studies, suggest that oral consumption of a modified form of pectin may have anti-cancer properties. These studies suggest that the modified pectin may act on a range of cancers at several stages of progression of the cancer. It has been hypothesised that this generic action is due to the modification allowing release of bioactive fragment(s) which are claimed to bind specifically to and inhibit the action of the mammalian lectin galectin 3 (Gal3). Gal3 is a key regulator of cellular homeostasis and plays important roles in several stages of cancer metastasis. Studies using force spectroscopy, flow cytometry and fluorescence microscopy suggest that the bioactive fragments of pectin may be pectin-derived galactans.
科研通智能强力驱动
Strongly Powered by AbleSci AI