Coupling annealed silver nanoparticles with a porous silicon Bragg mirror SERS substrate and machine learning for rapid non-invasive disease diagnosis

纳米壳 化学 表面等离子共振 多孔硅 基质(水族馆) 纳米颗粒 银纳米粒子 等离子体子 分析化学(期刊) 纳米技术 光电子学 材料科学 色谱法 海洋学 地质学 有机化学
作者
Shibin Han,Cheng Chen,Chen Chen,Lijun Wu,Xue Wu,Chen Lu,Xueqin Zhang,Peng Chao,Xiaoyi Lv,Zhenhong Jia,Junwei Hou
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1254: 341116-341116 被引量:50
标识
DOI:10.1016/j.aca.2023.341116
摘要

Ag2O-Ag-porous silicon Bragg mirror (PSB) composite SERS substrates were successfully synthesized by using a combination of electrochemical and thermochemical methods. Test results showed that the SERS signal increased and decreased as the annealing temperature used for the substrate increased, where the most intense SERS signal was obtained using a substrate annealed at 300 °C. Stability test results showed substantial enhancement of the SERS signal intensity of the Ag2O-Ag-PSB composite one month after preparation compared with that of conventional Ag-PSB. We conclude that Ag2O nanoshells play an essential role in SERS signal enhancement. Ag2O prevents natural oxidation of Ag nanoparticles (AgNPs) and has a solid localized surface plasmon resonance (LSPR). SERS signal enhancement was tested using this substrate for serum from patients with Sjögren's syndrome (SS) and Diabetic nephropathy (DN), as well as from healthy controls (HC). SERS feature extraction was performed using principal component analysis (PCA). The extracted features were analyzed by a support vector machine (SVM) algorithm. Finally, a rapid screening model for SS and HC, as well as DN and HC, was developed and used to perform controlled experiments. The results showed that the diagnostic accuracy, sensitivity and selectivity for SERS technology combined with machine learning algorithms reached 90.7%, 93.4% and 86.7% for SS/HC and 89.3%, 95.6% and 80% for DN/HC, respectively. The results of this study show that the composite substrate has excellent potential to be developed into a commercially available SERS chip for medical testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小白完成签到,获得积分10
1秒前
Jerlly完成签到,获得积分10
3秒前
长生发布了新的文献求助10
3秒前
ID27149完成签到,获得积分10
3秒前
奋斗的菲鹰完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Roosterrr完成签到,获得积分20
6秒前
8秒前
Me发布了新的文献求助10
10秒前
10秒前
11秒前
Irislee发布了新的文献求助30
11秒前
11秒前
沐沐君完成签到,获得积分10
12秒前
lcf完成签到,获得积分20
12秒前
13秒前
13秒前
幸福发布了新的文献求助10
13秒前
16秒前
苏州小北发布了新的文献求助10
17秒前
沐沐君发布了新的文献求助10
17秒前
17秒前
萧水白应助明理的亦寒采纳,获得10
18秒前
宣墨完成签到,获得积分10
19秒前
Irislee完成签到,获得积分10
19秒前
一方完成签到,获得积分10
19秒前
22秒前
22秒前
长生完成签到,获得积分10
23秒前
24秒前
脑洞疼应助谨慎问雁采纳,获得30
24秒前
yuky完成签到 ,获得积分10
25秒前
小蘑菇应助果891867430采纳,获得10
26秒前
科研通AI2S应助Me采纳,获得10
27秒前
27秒前
小二郎应助Me采纳,获得10
27秒前
领导范儿应助Me采纳,获得10
27秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387681
求助须知:如何正确求助?哪些是违规求助? 3000268
关于积分的说明 8790576
捐赠科研通 2686265
什么是DOI,文献DOI怎么找? 1471580
科研通“疑难数据库(出版商)”最低求助积分说明 680386
邀请新用户注册赠送积分活动 673142