Utilizing shared frailty with the Cox proportional hazards regression: Post discharge survival analysis of CHF patients

比例危险模型 医学 危险系数 生存分析 心理干预 心力衰竭 急诊医学 重症监护医学 内科学 置信区间 精神科
作者
Ofir Ben‐Assuli,Roni Ramon‐Gonen,Tsipi Heart,Arie Jacobi,Robert Klempfner
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:140: 104340-104340 被引量:2
标识
DOI:10.1016/j.jbi.2023.104340
摘要

Understanding patients' survival probability as well as the factors affecting it constitute a significant concern for researchers and practitioners, in particular for patients with severe chronic illnesses such as congestive heart failure (CHF). CHF is a clinical syndrome characterized by comorbidities and adverse medical events. Risk stratification to identify patients most likely to die shortly after hospital discharge can improve the quality of care by better allocating organizational resources and personalized interventions. Probability assessment improves clinical decision-making, contributes to personalized care, and saves costs. Although one of the most informative indices is the time to an adverse event for each patient, commonly analyzed using survival analysis methods, these are often challenging to implement due to the complexity of the medical data. Numerous studies have used the Cox proportional hazards (PH) regression method to generate the survival distribution pattern and factors affecting survival. This model, although advantageous for survival analysis, assumes the homogeneity of the hazard ratio across patients and independence of the observations in terms of survival time. These assumptions are often violated in real-world data, especially when the dataset is composed of readmission data for chronically ill patients, since these recurring observations are inherently dependent. This study ran the Cox PH regression on a feature set selected by machine learning algorithms from a rich hospital dataset. The event modeled here was patient mortality within 90 days post-hospital discharge. The sample was composed of medical records of patients hospitalized in the Israeli Sheba Medical Center more than once, with CHF as the primary diagnosis. We modeled the survival of CHF patients using the Cox PH regression with and without the shared frailty correction that addresses the shortcomings of the Cox Model. The results of the two models of the Cox PH regression - with and without the shared frailty correction were compared. The results demonstrate that the shared frailty correction, which was statistically significant in our analysis, improved the performance of the basic Cox PH model. While this is the main contribution, we also show that this model outperforms two commonly used measures (ADHERE and EFFECT) for predicting early mortality of CHF patients. Thus, the results illustrate how applying advanced analytics can outperform traditional methods. An additional contribution is the feature set selected using machine-learning methods that is different from those used in the extant literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TS发布了新的文献求助10
刚刚
zzr真真97完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
犹豫战斗机完成签到,获得积分10
3秒前
风趣采白完成签到,获得积分10
3秒前
脑洞疼应助xxw采纳,获得10
4秒前
脱壳金蝉完成签到,获得积分10
4秒前
5秒前
大力水手完成签到,获得积分10
5秒前
6秒前
8秒前
科研通AI2S应助now采纳,获得10
8秒前
len完成签到,获得积分10
8秒前
1111完成签到,获得积分10
9秒前
努力向前看完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
wt完成签到,获得积分10
12秒前
赵赵赵发布了新的文献求助10
13秒前
13秒前
木木水完成签到,获得积分10
13秒前
阿刚完成签到,获得积分10
13秒前
kryptonite完成签到 ,获得积分10
14秒前
EH完成签到,获得积分10
14秒前
15秒前
李健完成签到 ,获得积分10
15秒前
呆萌幻竹完成签到 ,获得积分10
17秒前
冰销雪释完成签到,获得积分10
17秒前
xxw发布了新的文献求助10
18秒前
TS完成签到,获得积分10
18秒前
聚乙二醇完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
Ava应助喜悦香萱采纳,获得10
19秒前
19秒前
123完成签到,获得积分10
21秒前
22秒前
exosome发布了新的文献求助10
22秒前
www完成签到,获得积分10
23秒前
研友_VZG7GZ应助xh采纳,获得10
24秒前
Yvan完成签到,获得积分10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661181
求助须知:如何正确求助?哪些是违规求助? 3222298
关于积分的说明 9744486
捐赠科研通 2931912
什么是DOI,文献DOI怎么找? 1605300
邀请新用户注册赠送积分活动 757805
科研通“疑难数据库(出版商)”最低求助积分说明 734569