Utilizing shared frailty with the Cox proportional hazards regression: Post discharge survival analysis of CHF patients

比例危险模型 医学 危险系数 生存分析 心理干预 心力衰竭 急诊医学 重症监护医学 内科学 置信区间 精神科
作者
Ofir Ben‐Assuli,Roni Ramon‐Gonen,Tsipi Heart,Arie Jacobi,Robert Klempfner
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:140: 104340-104340 被引量:2
标识
DOI:10.1016/j.jbi.2023.104340
摘要

Understanding patients' survival probability as well as the factors affecting it constitute a significant concern for researchers and practitioners, in particular for patients with severe chronic illnesses such as congestive heart failure (CHF). CHF is a clinical syndrome characterized by comorbidities and adverse medical events. Risk stratification to identify patients most likely to die shortly after hospital discharge can improve the quality of care by better allocating organizational resources and personalized interventions. Probability assessment improves clinical decision-making, contributes to personalized care, and saves costs. Although one of the most informative indices is the time to an adverse event for each patient, commonly analyzed using survival analysis methods, these are often challenging to implement due to the complexity of the medical data. Numerous studies have used the Cox proportional hazards (PH) regression method to generate the survival distribution pattern and factors affecting survival. This model, although advantageous for survival analysis, assumes the homogeneity of the hazard ratio across patients and independence of the observations in terms of survival time. These assumptions are often violated in real-world data, especially when the dataset is composed of readmission data for chronically ill patients, since these recurring observations are inherently dependent. This study ran the Cox PH regression on a feature set selected by machine learning algorithms from a rich hospital dataset. The event modeled here was patient mortality within 90 days post-hospital discharge. The sample was composed of medical records of patients hospitalized in the Israeli Sheba Medical Center more than once, with CHF as the primary diagnosis. We modeled the survival of CHF patients using the Cox PH regression with and without the shared frailty correction that addresses the shortcomings of the Cox Model. The results of the two models of the Cox PH regression - with and without the shared frailty correction were compared. The results demonstrate that the shared frailty correction, which was statistically significant in our analysis, improved the performance of the basic Cox PH model. While this is the main contribution, we also show that this model outperforms two commonly used measures (ADHERE and EFFECT) for predicting early mortality of CHF patients. Thus, the results illustrate how applying advanced analytics can outperform traditional methods. An additional contribution is the feature set selected using machine-learning methods that is different from those used in the extant literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
石友瑶发布了新的文献求助10
1秒前
zouni完成签到,获得积分10
1秒前
1秒前
团子完成签到,获得积分10
2秒前
2秒前
3秒前
小卡拉米发布了新的文献求助10
3秒前
4秒前
5秒前
北北关注了科研通微信公众号
6秒前
小逗比完成签到,获得积分10
7秒前
乐乐应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
明理的绿蓉完成签到,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
香蕉觅云应助科研通管家采纳,获得20
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
雨归完成签到 ,获得积分10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Nailuokk应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
闪闪涫应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
笨笨凡松发布了新的文献求助10
10秒前
快乐的小凡完成签到,获得积分10
11秒前
12秒前
14秒前
无极微光应助灿灿采纳,获得20
14秒前
英姑应助陈陈采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759