Utilizing shared frailty with the Cox proportional hazards regression: Post discharge survival analysis of CHF patients

比例危险模型 医学 危险系数 生存分析 心理干预 心力衰竭 急诊医学 重症监护医学 内科学 置信区间 精神科
作者
Ofir Ben‐Assuli,Roni Ramon‐Gonen,Tsipi Heart,Arie Jacobi,Robert Klempfner
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:140: 104340-104340 被引量:2
标识
DOI:10.1016/j.jbi.2023.104340
摘要

Understanding patients' survival probability as well as the factors affecting it constitute a significant concern for researchers and practitioners, in particular for patients with severe chronic illnesses such as congestive heart failure (CHF). CHF is a clinical syndrome characterized by comorbidities and adverse medical events. Risk stratification to identify patients most likely to die shortly after hospital discharge can improve the quality of care by better allocating organizational resources and personalized interventions. Probability assessment improves clinical decision-making, contributes to personalized care, and saves costs. Although one of the most informative indices is the time to an adverse event for each patient, commonly analyzed using survival analysis methods, these are often challenging to implement due to the complexity of the medical data. Numerous studies have used the Cox proportional hazards (PH) regression method to generate the survival distribution pattern and factors affecting survival. This model, although advantageous for survival analysis, assumes the homogeneity of the hazard ratio across patients and independence of the observations in terms of survival time. These assumptions are often violated in real-world data, especially when the dataset is composed of readmission data for chronically ill patients, since these recurring observations are inherently dependent. This study ran the Cox PH regression on a feature set selected by machine learning algorithms from a rich hospital dataset. The event modeled here was patient mortality within 90 days post-hospital discharge. The sample was composed of medical records of patients hospitalized in the Israeli Sheba Medical Center more than once, with CHF as the primary diagnosis. We modeled the survival of CHF patients using the Cox PH regression with and without the shared frailty correction that addresses the shortcomings of the Cox Model. The results of the two models of the Cox PH regression - with and without the shared frailty correction were compared. The results demonstrate that the shared frailty correction, which was statistically significant in our analysis, improved the performance of the basic Cox PH model. While this is the main contribution, we also show that this model outperforms two commonly used measures (ADHERE and EFFECT) for predicting early mortality of CHF patients. Thus, the results illustrate how applying advanced analytics can outperform traditional methods. An additional contribution is the feature set selected using machine-learning methods that is different from those used in the extant literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻山芙发布了新的文献求助10
2秒前
红枫没有微雨怜完成签到 ,获得积分10
2秒前
3秒前
wangxc完成签到 ,获得积分10
5秒前
felicity完成签到 ,获得积分10
5秒前
汉堡包应助陈启10000采纳,获得10
6秒前
Wenpandaen发布了新的文献求助10
6秒前
漠漠完成签到 ,获得积分10
6秒前
小二郎应助云_123采纳,获得10
10秒前
pluto应助Seren采纳,获得50
11秒前
12秒前
13秒前
不配.应助Moonflower采纳,获得20
14秒前
felicia12138完成签到 ,获得积分10
15秒前
MEEW发布了新的文献求助10
15秒前
苹果书兰完成签到 ,获得积分10
17秒前
18秒前
20秒前
Zr完成签到,获得积分10
20秒前
慕青应助西门访天采纳,获得10
20秒前
CipherSage应助Luigi采纳,获得10
21秒前
Jun完成签到 ,获得积分10
21秒前
云_123发布了新的文献求助10
22秒前
lindsay完成签到,获得积分10
22秒前
完美世界应助长孙归尘采纳,获得10
23秒前
大个应助Wenpandaen采纳,获得10
27秒前
28秒前
CipherSage应助昏睡的朝雪采纳,获得10
28秒前
31秒前
CodeCraft应助生动的冷玉采纳,获得10
33秒前
长孙归尘发布了新的文献求助10
33秒前
能干的麦片完成签到 ,获得积分10
33秒前
传奇3应助小陈采纳,获得10
35秒前
善学以致用应助momo采纳,获得10
36秒前
39秒前
十四发布了新的文献求助10
41秒前
蛋壳柯发布了新的文献求助10
42秒前
小聂完成签到,获得积分10
43秒前
Luigi发布了新的文献求助10
43秒前
自由溪灵完成签到,获得积分10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134935
求助须知:如何正确求助?哪些是违规求助? 2785802
关于积分的说明 7774295
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298093
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825