Utilizing shared frailty with the Cox proportional hazards regression: Post discharge survival analysis of CHF patients

比例危险模型 医学 危险系数 生存分析 心理干预 心力衰竭 急诊医学 重症监护医学 内科学 置信区间 精神科
作者
Ofir Ben‐Assuli,Roni Ramon‐Gonen,Tsipi Heart,Arie Jacobi,Robert Klempfner
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:140: 104340-104340 被引量:2
标识
DOI:10.1016/j.jbi.2023.104340
摘要

Understanding patients' survival probability as well as the factors affecting it constitute a significant concern for researchers and practitioners, in particular for patients with severe chronic illnesses such as congestive heart failure (CHF). CHF is a clinical syndrome characterized by comorbidities and adverse medical events. Risk stratification to identify patients most likely to die shortly after hospital discharge can improve the quality of care by better allocating organizational resources and personalized interventions. Probability assessment improves clinical decision-making, contributes to personalized care, and saves costs. Although one of the most informative indices is the time to an adverse event for each patient, commonly analyzed using survival analysis methods, these are often challenging to implement due to the complexity of the medical data. Numerous studies have used the Cox proportional hazards (PH) regression method to generate the survival distribution pattern and factors affecting survival. This model, although advantageous for survival analysis, assumes the homogeneity of the hazard ratio across patients and independence of the observations in terms of survival time. These assumptions are often violated in real-world data, especially when the dataset is composed of readmission data for chronically ill patients, since these recurring observations are inherently dependent. This study ran the Cox PH regression on a feature set selected by machine learning algorithms from a rich hospital dataset. The event modeled here was patient mortality within 90 days post-hospital discharge. The sample was composed of medical records of patients hospitalized in the Israeli Sheba Medical Center more than once, with CHF as the primary diagnosis. We modeled the survival of CHF patients using the Cox PH regression with and without the shared frailty correction that addresses the shortcomings of the Cox Model. The results of the two models of the Cox PH regression - with and without the shared frailty correction were compared. The results demonstrate that the shared frailty correction, which was statistically significant in our analysis, improved the performance of the basic Cox PH model. While this is the main contribution, we also show that this model outperforms two commonly used measures (ADHERE and EFFECT) for predicting early mortality of CHF patients. Thus, the results illustrate how applying advanced analytics can outperform traditional methods. An additional contribution is the feature set selected using machine-learning methods that is different from those used in the extant literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
1秒前
Orange应助科研通管家采纳,获得10
1秒前
卡牌大师完成签到,获得积分10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
浮游应助lhy采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
大白发布了新的文献求助10
1秒前
花花发布了新的文献求助20
2秒前
昕昕233完成签到,获得积分10
2秒前
2秒前
Tourist应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
yyxx完成签到,获得积分10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得30
3秒前
eric888应助科研通管家采纳,获得100
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
浮游应助sunjiayi采纳,获得10
4秒前
ghost应助科研通管家采纳,获得10
4秒前
Tourist应助科研通管家采纳,获得10
4秒前
Aluhaer应助科研通管家采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
star应助科研通管家采纳,获得50
4秒前
4秒前
4秒前
王zz完成签到,获得积分10
5秒前
CCCC发布了新的文献求助20
5秒前
昕昕233发布了新的文献求助10
5秒前
5秒前
没有花活儿完成签到,获得积分10
6秒前
bingrui完成签到,获得积分10
6秒前
等待的鱼发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181196
求助须知:如何正确求助?哪些是违规求助? 4368303
关于积分的说明 13602302
捐赠科研通 4219276
什么是DOI,文献DOI怎么找? 2314014
邀请新用户注册赠送积分活动 1312748
关于科研通互助平台的介绍 1261388