Utilizing shared frailty with the Cox proportional hazards regression: Post discharge survival analysis of CHF patients

比例危险模型 医学 危险系数 生存分析 心理干预 心力衰竭 急诊医学 重症监护医学 内科学 置信区间 精神科
作者
Ofir Ben‐Assuli,Roni Ramon‐Gonen,Tsipi Heart,Arie Jacobi,Robert Klempfner
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:140: 104340-104340 被引量:2
标识
DOI:10.1016/j.jbi.2023.104340
摘要

Understanding patients' survival probability as well as the factors affecting it constitute a significant concern for researchers and practitioners, in particular for patients with severe chronic illnesses such as congestive heart failure (CHF). CHF is a clinical syndrome characterized by comorbidities and adverse medical events. Risk stratification to identify patients most likely to die shortly after hospital discharge can improve the quality of care by better allocating organizational resources and personalized interventions. Probability assessment improves clinical decision-making, contributes to personalized care, and saves costs. Although one of the most informative indices is the time to an adverse event for each patient, commonly analyzed using survival analysis methods, these are often challenging to implement due to the complexity of the medical data. Numerous studies have used the Cox proportional hazards (PH) regression method to generate the survival distribution pattern and factors affecting survival. This model, although advantageous for survival analysis, assumes the homogeneity of the hazard ratio across patients and independence of the observations in terms of survival time. These assumptions are often violated in real-world data, especially when the dataset is composed of readmission data for chronically ill patients, since these recurring observations are inherently dependent. This study ran the Cox PH regression on a feature set selected by machine learning algorithms from a rich hospital dataset. The event modeled here was patient mortality within 90 days post-hospital discharge. The sample was composed of medical records of patients hospitalized in the Israeli Sheba Medical Center more than once, with CHF as the primary diagnosis. We modeled the survival of CHF patients using the Cox PH regression with and without the shared frailty correction that addresses the shortcomings of the Cox Model. The results of the two models of the Cox PH regression - with and without the shared frailty correction were compared. The results demonstrate that the shared frailty correction, which was statistically significant in our analysis, improved the performance of the basic Cox PH model. While this is the main contribution, we also show that this model outperforms two commonly used measures (ADHERE and EFFECT) for predicting early mortality of CHF patients. Thus, the results illustrate how applying advanced analytics can outperform traditional methods. An additional contribution is the feature set selected using machine-learning methods that is different from those used in the extant literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
鹏虫虫发布了新的文献求助10
1秒前
1秒前
2秒前
Jasper应助田国兵采纳,获得10
2秒前
王彤关注了科研通微信公众号
2秒前
嘻嘻完成签到,获得积分10
2秒前
3秒前
cy完成签到 ,获得积分10
3秒前
淮安重午发布了新的文献求助10
4秒前
李墨迹完成签到,获得积分10
4秒前
4秒前
ttt发布了新的文献求助10
4秒前
Hello应助吴倩采纳,获得10
4秒前
4秒前
sun发布了新的文献求助10
4秒前
champ完成签到,获得积分10
5秒前
5秒前
爆米花应助冷静新烟采纳,获得10
5秒前
呜啦啦发布了新的文献求助10
5秒前
科目三应助科研小秦采纳,获得10
6秒前
6秒前
畅快士萧发布了新的文献求助10
7秒前
凉茗余香完成签到,获得积分10
7秒前
小马甲应助3w要少睡觉采纳,获得10
7秒前
Jasper应助灰灰采纳,获得10
7秒前
iwsaml发布了新的文献求助10
7秒前
8秒前
8秒前
champ发布了新的文献求助10
8秒前
9秒前
阿郑发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
luo发布了新的文献求助10
10秒前
淮安重午完成签到,获得积分10
11秒前
CJlamant发布了新的文献求助10
11秒前
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443045
求助须知:如何正确求助?哪些是违规求助? 4553014
关于积分的说明 14240267
捐赠科研通 4474566
什么是DOI,文献DOI怎么找? 2452011
邀请新用户注册赠送积分活动 1442958
关于科研通互助平台的介绍 1418682