已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Utilizing shared frailty with the Cox proportional hazards regression: Post discharge survival analysis of CHF patients

比例危险模型 医学 危险系数 生存分析 心理干预 心力衰竭 急诊医学 重症监护医学 内科学 置信区间 精神科
作者
Ofir Ben‐Assuli,Roni Ramon‐Gonen,Tsipi Heart,Arie Jacobi,Robert Klempfner
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:140: 104340-104340 被引量:2
标识
DOI:10.1016/j.jbi.2023.104340
摘要

Understanding patients' survival probability as well as the factors affecting it constitute a significant concern for researchers and practitioners, in particular for patients with severe chronic illnesses such as congestive heart failure (CHF). CHF is a clinical syndrome characterized by comorbidities and adverse medical events. Risk stratification to identify patients most likely to die shortly after hospital discharge can improve the quality of care by better allocating organizational resources and personalized interventions. Probability assessment improves clinical decision-making, contributes to personalized care, and saves costs. Although one of the most informative indices is the time to an adverse event for each patient, commonly analyzed using survival analysis methods, these are often challenging to implement due to the complexity of the medical data. Numerous studies have used the Cox proportional hazards (PH) regression method to generate the survival distribution pattern and factors affecting survival. This model, although advantageous for survival analysis, assumes the homogeneity of the hazard ratio across patients and independence of the observations in terms of survival time. These assumptions are often violated in real-world data, especially when the dataset is composed of readmission data for chronically ill patients, since these recurring observations are inherently dependent. This study ran the Cox PH regression on a feature set selected by machine learning algorithms from a rich hospital dataset. The event modeled here was patient mortality within 90 days post-hospital discharge. The sample was composed of medical records of patients hospitalized in the Israeli Sheba Medical Center more than once, with CHF as the primary diagnosis. We modeled the survival of CHF patients using the Cox PH regression with and without the shared frailty correction that addresses the shortcomings of the Cox Model. The results of the two models of the Cox PH regression - with and without the shared frailty correction were compared. The results demonstrate that the shared frailty correction, which was statistically significant in our analysis, improved the performance of the basic Cox PH model. While this is the main contribution, we also show that this model outperforms two commonly used measures (ADHERE and EFFECT) for predicting early mortality of CHF patients. Thus, the results illustrate how applying advanced analytics can outperform traditional methods. An additional contribution is the feature set selected using machine-learning methods that is different from those used in the extant literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助panyi采纳,获得10
刚刚
2秒前
3秒前
joan完成签到,获得积分10
4秒前
4秒前
传奇3应助Tracy采纳,获得10
5秒前
薛变霞发布了新的文献求助10
5秒前
幸运幸福完成签到,获得积分10
6秒前
yuanyuan发布了新的文献求助10
6秒前
优雅完成签到,获得积分10
7秒前
斯文怀寒完成签到 ,获得积分20
7秒前
7秒前
善学以致用应助想想采纳,获得10
8秒前
端庄的飞阳完成签到 ,获得积分10
8秒前
orixero应助健忘海露采纳,获得10
9秒前
清风如月发布了新的文献求助10
9秒前
qiandi完成签到 ,获得积分10
10秒前
12秒前
无限白羊发布了新的文献求助10
13秒前
14秒前
yuanyuan完成签到,获得积分10
15秒前
17秒前
大模型应助复方蛋酥卷采纳,获得20
18秒前
18秒前
19秒前
英姑应助留胡子的大树采纳,获得10
20秒前
十六夜彦完成签到,获得积分10
20秒前
浮光发布了新的文献求助10
21秒前
菠萝完成签到 ,获得积分0
22秒前
23秒前
25秒前
LA发布了新的文献求助20
27秒前
香蕉觅云应助李国铭采纳,获得10
27秒前
28秒前
orcusyoung发布了新的文献求助10
29秒前
29秒前
在水一方应助DrDaiJune采纳,获得10
29秒前
Takahara2000完成签到,获得积分10
30秒前
斯文怀寒发布了新的文献求助10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488170
求助须知:如何正确求助?哪些是违规求助? 4587174
关于积分的说明 14412856
捐赠科研通 4518407
什么是DOI,文献DOI怎么找? 2475741
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263