亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent recognition method of indication of substation pointer instrument based on deformable convolution neural network

人工智能 卷积神经网络 计算机科学 指针(用户界面) 计算机视觉 人工神经网络
作者
Guohua Lu,Zhiyong Tong,Junhui Wang,Likun Gao
标识
DOI:10.1109/iaecst57965.2022.10062024
摘要

Intelligent identification method of indicator number of substation instrument based on deformable convolutional neural network there are many equipment in substation, and the value and scale of oil thermometer, oil level gauge, pressure gauge and other instrument equipment reflect the operation state of most instruments and meters, which is particularly important. Therefore, the research on value reading of instrument equipment in substation is particularly key. At present, for the instrument recognition of substation, most studies use traditional image processing and machine learning methods. However, in the recognition process, due to the influence of uneven illumination, complex background, rotation angle, image blur, shooting angle, proportion change and other factors, the recognition accuracy of pointer instrument is low and its usability is poor. In order to solve the above problems, this paper combines the traditional image processing technology with the deep learning method, and proposes an automatic recognition method of substation pointer instrument based on deformable convolutional neural network. The idea of deformable volume is introduced to enhance the modeling ability of convolutional neural network, so as to improve the accuracy of instrument recognition. The main idea is that firstly, the deformable convolution neural network method is used to detect the instrument image in the image, then the residual neural network is used to extract the key points of the instrument dial and pointer, then the detected key points are used to fit the dial circle and pointer, and finally the readout value is calculated according to the deflection angle of the pointer relative to the scale. The experimental results show that this method is very effective for the identification of pointer instruments, and has high accuracy and practicability, which is conducive to promoting the realization of intelligent operation and maintenance of substation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
16秒前
火星的雪完成签到 ,获得积分0
19秒前
29秒前
he发布了新的文献求助10
33秒前
思源应助MrRen采纳,获得10
47秒前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
抚琴祛魅完成签到 ,获得积分10
2分钟前
重重完成签到 ,获得积分10
2分钟前
qiaorankongling完成签到 ,获得积分10
2分钟前
田様应助he采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
MrRen完成签到,获得积分10
3分钟前
安青兰完成签到 ,获得积分10
3分钟前
MrRen发布了新的文献求助10
3分钟前
木昆完成签到 ,获得积分10
3分钟前
Giny完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
挣钱抱男模完成签到,获得积分10
3分钟前
3分钟前
he发布了新的文献求助10
3分钟前
Orange应助he采纳,获得10
4分钟前
浮游应助挣钱抱男模采纳,获得10
4分钟前
我是老大应助YY采纳,获得30
4分钟前
4分钟前
一只鲨呱完成签到 ,获得积分10
5分钟前
灵巧的代芙完成签到 ,获得积分10
5分钟前
6分钟前
烟花应助朗源Wu采纳,获得10
6分钟前
6分钟前
ZZ发布了新的文献求助10
6分钟前
6分钟前
7分钟前
开朗子默发布了新的文献求助20
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470165
求助须知:如何正确求助?哪些是违规求助? 4573063
关于积分的说明 14338019
捐赠科研通 4500079
什么是DOI,文献DOI怎么找? 2465528
邀请新用户注册赠送积分活动 1453892
关于科研通互助平台的介绍 1428523