Intelligent recognition method of indication of substation pointer instrument based on deformable convolution neural network

人工智能 卷积神经网络 计算机科学 指针(用户界面) 计算机视觉 人工神经网络
作者
Guohua Lu,Zhiyong Tong,Junhui Wang,Likun Gao
标识
DOI:10.1109/iaecst57965.2022.10062024
摘要

Intelligent identification method of indicator number of substation instrument based on deformable convolutional neural network there are many equipment in substation, and the value and scale of oil thermometer, oil level gauge, pressure gauge and other instrument equipment reflect the operation state of most instruments and meters, which is particularly important. Therefore, the research on value reading of instrument equipment in substation is particularly key. At present, for the instrument recognition of substation, most studies use traditional image processing and machine learning methods. However, in the recognition process, due to the influence of uneven illumination, complex background, rotation angle, image blur, shooting angle, proportion change and other factors, the recognition accuracy of pointer instrument is low and its usability is poor. In order to solve the above problems, this paper combines the traditional image processing technology with the deep learning method, and proposes an automatic recognition method of substation pointer instrument based on deformable convolutional neural network. The idea of deformable volume is introduced to enhance the modeling ability of convolutional neural network, so as to improve the accuracy of instrument recognition. The main idea is that firstly, the deformable convolution neural network method is used to detect the instrument image in the image, then the residual neural network is used to extract the key points of the instrument dial and pointer, then the detected key points are used to fit the dial circle and pointer, and finally the readout value is calculated according to the deflection angle of the pointer relative to the scale. The experimental results show that this method is very effective for the identification of pointer instruments, and has high accuracy and practicability, which is conducive to promoting the realization of intelligent operation and maintenance of substation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bopbopbaby发布了新的文献求助200
刚刚
sll完成签到,获得积分10
刚刚
犹豫的一斩应助迅速冰岚采纳,获得10
刚刚
聂裕铭完成签到 ,获得积分10
刚刚
谦让成协完成签到,获得积分10
1秒前
1秒前
大个应助侦察兵采纳,获得10
1秒前
科研通AI5应助猪猪hero采纳,获得10
1秒前
1秒前
1秒前
WilsonT完成签到,获得积分10
1秒前
SDS发布了新的文献求助10
2秒前
LLL发布了新的文献求助10
2秒前
爆米花应助娜行采纳,获得10
3秒前
3秒前
虫二队长完成签到,获得积分10
3秒前
3秒前
manan发布了新的文献求助10
3秒前
铸一字错完成签到,获得积分10
3秒前
3秒前
诚c完成签到,获得积分10
3秒前
正在输入中应助niu1采纳,获得10
4秒前
4秒前
王大帅哥完成签到,获得积分10
4秒前
qianhuxinyu完成签到,获得积分10
4秒前
4秒前
烟雾发布了新的文献求助10
4秒前
5秒前
宁听白完成签到,获得积分10
5秒前
yinxx完成签到,获得积分10
5秒前
5秒前
知123完成签到,获得积分10
6秒前
小鳄鱼一只完成签到,获得积分10
6秒前
一叶舟完成签到,获得积分10
7秒前
MADKAI发布了新的文献求助10
7秒前
吉势甘完成签到,获得积分10
7秒前
Tira发布了新的文献求助10
7秒前
7秒前
酷波er应助研友_nPPERn采纳,获得10
7秒前
顾己发布了新的文献求助20
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678