Intelligent recognition method of indication of substation pointer instrument based on deformable convolution neural network

人工智能 卷积神经网络 计算机科学 指针(用户界面) 计算机视觉 人工神经网络
作者
Guohua Lu,Zhiyong Tong,Junhui Wang,Likun Gao
标识
DOI:10.1109/iaecst57965.2022.10062024
摘要

Intelligent identification method of indicator number of substation instrument based on deformable convolutional neural network there are many equipment in substation, and the value and scale of oil thermometer, oil level gauge, pressure gauge and other instrument equipment reflect the operation state of most instruments and meters, which is particularly important. Therefore, the research on value reading of instrument equipment in substation is particularly key. At present, for the instrument recognition of substation, most studies use traditional image processing and machine learning methods. However, in the recognition process, due to the influence of uneven illumination, complex background, rotation angle, image blur, shooting angle, proportion change and other factors, the recognition accuracy of pointer instrument is low and its usability is poor. In order to solve the above problems, this paper combines the traditional image processing technology with the deep learning method, and proposes an automatic recognition method of substation pointer instrument based on deformable convolutional neural network. The idea of deformable volume is introduced to enhance the modeling ability of convolutional neural network, so as to improve the accuracy of instrument recognition. The main idea is that firstly, the deformable convolution neural network method is used to detect the instrument image in the image, then the residual neural network is used to extract the key points of the instrument dial and pointer, then the detected key points are used to fit the dial circle and pointer, and finally the readout value is calculated according to the deflection angle of the pointer relative to the scale. The experimental results show that this method is very effective for the identification of pointer instruments, and has high accuracy and practicability, which is conducive to promoting the realization of intelligent operation and maintenance of substation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要聪展发布了新的文献求助10
刚刚
Jessie完成签到,获得积分10
刚刚
刚刚
Dongsy完成签到,获得积分10
1秒前
万能图书馆应助坦率乌采纳,获得10
1秒前
1秒前
lwk发布了新的文献求助10
1秒前
我是老大应助dave采纳,获得30
1秒前
456487s完成签到,获得积分10
2秒前
潇湘雪月完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
百事可乐完成签到,获得积分10
2秒前
chi2完成签到,获得积分10
2秒前
Feng完成签到,获得积分10
2秒前
zyj完成签到,获得积分10
2秒前
沉静的煎蛋完成签到 ,获得积分10
2秒前
3秒前
MB1234567完成签到,获得积分10
3秒前
eric曾完成签到,获得积分10
3秒前
洪桂淋完成签到,获得积分10
4秒前
紧张的毛衣完成签到,获得积分10
4秒前
12发布了新的文献求助10
4秒前
只有个石头完成签到,获得积分10
4秒前
Ava应助西瓜采纳,获得10
4秒前
4秒前
4秒前
4秒前
lyy完成签到 ,获得积分10
5秒前
cfplrbs完成签到,获得积分20
5秒前
大力语山发布了新的文献求助10
5秒前
gyq发布了新的文献求助10
5秒前
陈末应助123采纳,获得10
5秒前
5秒前
5秒前
ZYC发布了新的文献求助20
5秒前
6秒前
赵子迪发布了新的文献求助10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5427734
求助须知:如何正确求助?哪些是违规求助? 4541470
关于积分的说明 14177378
捐赠科研通 4459139
什么是DOI,文献DOI怎么找? 2445250
邀请新用户注册赠送积分活动 1436438
关于科研通互助平台的介绍 1413797