Intelligent recognition method of indication of substation pointer instrument based on deformable convolution neural network

人工智能 卷积神经网络 计算机科学 指针(用户界面) 计算机视觉 人工神经网络
作者
Guohua Lu,Zhiyong Tong,Junhui Wang,Likun Gao
标识
DOI:10.1109/iaecst57965.2022.10062024
摘要

Intelligent identification method of indicator number of substation instrument based on deformable convolutional neural network there are many equipment in substation, and the value and scale of oil thermometer, oil level gauge, pressure gauge and other instrument equipment reflect the operation state of most instruments and meters, which is particularly important. Therefore, the research on value reading of instrument equipment in substation is particularly key. At present, for the instrument recognition of substation, most studies use traditional image processing and machine learning methods. However, in the recognition process, due to the influence of uneven illumination, complex background, rotation angle, image blur, shooting angle, proportion change and other factors, the recognition accuracy of pointer instrument is low and its usability is poor. In order to solve the above problems, this paper combines the traditional image processing technology with the deep learning method, and proposes an automatic recognition method of substation pointer instrument based on deformable convolutional neural network. The idea of deformable volume is introduced to enhance the modeling ability of convolutional neural network, so as to improve the accuracy of instrument recognition. The main idea is that firstly, the deformable convolution neural network method is used to detect the instrument image in the image, then the residual neural network is used to extract the key points of the instrument dial and pointer, then the detected key points are used to fit the dial circle and pointer, and finally the readout value is calculated according to the deflection angle of the pointer relative to the scale. The experimental results show that this method is very effective for the identification of pointer instruments, and has high accuracy and practicability, which is conducive to promoting the realization of intelligent operation and maintenance of substation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助博思好行采纳,获得10
刚刚
刚刚
上官若男应助迷你的依凝采纳,获得10
刚刚
刚刚
刚刚
Faye完成签到 ,获得积分10
1秒前
zhaoshuo发布了新的文献求助10
1秒前
慕青应助一年5篇采纳,获得10
2秒前
2秒前
自觉水绿发布了新的文献求助10
2秒前
雨寒完成签到,获得积分10
3秒前
xixi发布了新的文献求助10
3秒前
赵科翊完成签到,获得积分10
3秒前
Breathe完成签到 ,获得积分10
4秒前
Jessie完成签到,获得积分10
4秒前
liucheng发布了新的文献求助30
5秒前
5秒前
5秒前
5秒前
HI发布了新的文献求助10
6秒前
6秒前
qianqina完成签到,获得积分10
6秒前
好好好完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
乔乔完成签到,获得积分10
7秒前
7秒前
在水一方应助一群牛采纳,获得10
8秒前
8秒前
shiqiang mu应助雨寒采纳,获得10
8秒前
9秒前
未知发布了新的文献求助10
9秒前
9秒前
高媛完成签到,获得积分20
10秒前
yelaikuhun74发布了新的文献求助10
10秒前
蒋一发布了新的文献求助10
11秒前
qianqina发布了新的文献求助10
11秒前
11秒前
qise应助管夜白采纳,获得10
11秒前
乔呀完成签到,获得积分10
11秒前
xixi完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403