Intelligent recognition method of indication of substation pointer instrument based on deformable convolution neural network

人工智能 卷积神经网络 计算机科学 指针(用户界面) 计算机视觉 人工神经网络
作者
Guohua Lu,Zhiyong Tong,Junhui Wang,Likun Gao
标识
DOI:10.1109/iaecst57965.2022.10062024
摘要

Intelligent identification method of indicator number of substation instrument based on deformable convolutional neural network there are many equipment in substation, and the value and scale of oil thermometer, oil level gauge, pressure gauge and other instrument equipment reflect the operation state of most instruments and meters, which is particularly important. Therefore, the research on value reading of instrument equipment in substation is particularly key. At present, for the instrument recognition of substation, most studies use traditional image processing and machine learning methods. However, in the recognition process, due to the influence of uneven illumination, complex background, rotation angle, image blur, shooting angle, proportion change and other factors, the recognition accuracy of pointer instrument is low and its usability is poor. In order to solve the above problems, this paper combines the traditional image processing technology with the deep learning method, and proposes an automatic recognition method of substation pointer instrument based on deformable convolutional neural network. The idea of deformable volume is introduced to enhance the modeling ability of convolutional neural network, so as to improve the accuracy of instrument recognition. The main idea is that firstly, the deformable convolution neural network method is used to detect the instrument image in the image, then the residual neural network is used to extract the key points of the instrument dial and pointer, then the detected key points are used to fit the dial circle and pointer, and finally the readout value is calculated according to the deflection angle of the pointer relative to the scale. The experimental results show that this method is very effective for the identification of pointer instruments, and has high accuracy and practicability, which is conducive to promoting the realization of intelligent operation and maintenance of substation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳的流沙完成签到,获得积分10
1秒前
领导范儿应助Abdurrahman采纳,获得30
3秒前
4秒前
lili发布了新的文献求助10
4秒前
文鞅发布了新的文献求助10
5秒前
5秒前
秋雁风完成签到,获得积分20
6秒前
7秒前
CodeCraft应助kikiii采纳,获得10
8秒前
小郭发布了新的文献求助10
8秒前
溜溜球完成签到,获得积分10
8秒前
victorzou发布了新的文献求助20
10秒前
93完成签到,获得积分10
12秒前
天天快乐应助zzz采纳,获得10
12秒前
科目三应助秀丽的小红采纳,获得10
12秒前
12秒前
自信搬砖完成签到,获得积分10
13秒前
14秒前
14秒前
随遇而安应助xxxyyyyyddd采纳,获得20
14秒前
哈哈哈发布了新的文献求助10
14秒前
Orange应助单薄紫菜采纳,获得10
15秒前
ccalvintan完成签到,获得积分10
16秒前
16秒前
18秒前
bbear发布了新的文献求助10
19秒前
冷静水池完成签到,获得积分10
20秒前
粗犷的书包完成签到,获得积分10
21秒前
科研通AI5应助jzhou88采纳,获得10
21秒前
21秒前
zlq完成签到,获得积分10
22秒前
英俊的铭应助聪慧的斑马采纳,获得30
22秒前
22秒前
22秒前
lili完成签到,获得积分10
23秒前
SWEETYXY发布了新的文献求助10
23秒前
开心的芒果应助优美飞薇采纳,获得10
24秒前
zlq发布了新的文献求助10
25秒前
Prime完成签到 ,获得积分10
26秒前
科研通AI2S应助简单刺猬采纳,获得10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842096
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533721
捐赠科研通 3104627
什么是DOI,文献DOI怎么找? 1709760
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773993