亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent recognition method of indication of substation pointer instrument based on deformable convolution neural network

人工智能 卷积神经网络 计算机科学 指针(用户界面) 计算机视觉 人工神经网络
作者
Guohua Lu,Zhiyong Tong,Junhui Wang,Likun Gao
标识
DOI:10.1109/iaecst57965.2022.10062024
摘要

Intelligent identification method of indicator number of substation instrument based on deformable convolutional neural network there are many equipment in substation, and the value and scale of oil thermometer, oil level gauge, pressure gauge and other instrument equipment reflect the operation state of most instruments and meters, which is particularly important. Therefore, the research on value reading of instrument equipment in substation is particularly key. At present, for the instrument recognition of substation, most studies use traditional image processing and machine learning methods. However, in the recognition process, due to the influence of uneven illumination, complex background, rotation angle, image blur, shooting angle, proportion change and other factors, the recognition accuracy of pointer instrument is low and its usability is poor. In order to solve the above problems, this paper combines the traditional image processing technology with the deep learning method, and proposes an automatic recognition method of substation pointer instrument based on deformable convolutional neural network. The idea of deformable volume is introduced to enhance the modeling ability of convolutional neural network, so as to improve the accuracy of instrument recognition. The main idea is that firstly, the deformable convolution neural network method is used to detect the instrument image in the image, then the residual neural network is used to extract the key points of the instrument dial and pointer, then the detected key points are used to fit the dial circle and pointer, and finally the readout value is calculated according to the deflection angle of the pointer relative to the scale. The experimental results show that this method is very effective for the identification of pointer instruments, and has high accuracy and practicability, which is conducive to promoting the realization of intelligent operation and maintenance of substation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
think0000完成签到,获得积分10
24秒前
breeze完成签到,获得积分10
29秒前
勤天禾伙人完成签到 ,获得积分10
46秒前
charih完成签到 ,获得积分10
1分钟前
1分钟前
从容的招牌完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
枯叶蝶完成签到 ,获得积分10
3分钟前
嘟嘟完成签到 ,获得积分10
3分钟前
zhongyaosyj完成签到,获得积分10
3分钟前
XIN完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
脑洞疼应助TianY天翊采纳,获得10
4分钟前
李健应助炙热的千亦采纳,获得10
4分钟前
5分钟前
TianY天翊发布了新的文献求助10
5分钟前
浮游应助科研通管家采纳,获得10
5分钟前
TianY天翊完成签到,获得积分10
5分钟前
夏花般灿烂完成签到,获得积分10
5分钟前
科研通AI6应助ryf采纳,获得10
5分钟前
5分钟前
Funnymudpee发布了新的文献求助10
5分钟前
5分钟前
5分钟前
6分钟前
ryf发布了新的文献求助10
6分钟前
xxxxxxh发布了新的文献求助30
6分钟前
xxxxxxh完成签到,获得积分10
6分钟前
6分钟前
Dr发布了新的文献求助10
6分钟前
马宁婧完成签到 ,获得积分10
6分钟前
Dr完成签到,获得积分10
6分钟前
六六完成签到 ,获得积分10
7分钟前
Hello应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324080
求助须知:如何正确求助?哪些是违规求助? 4465100
关于积分的说明 13894130
捐赠科研通 4356903
什么是DOI,文献DOI怎么找? 2393083
邀请新用户注册赠送积分活动 1386580
关于科研通互助平台的介绍 1356862