Intelligent recognition method of indication of substation pointer instrument based on deformable convolution neural network

人工智能 卷积神经网络 计算机科学 指针(用户界面) 计算机视觉 人工神经网络
作者
Guohua Lu,Zhiyong Tong,Junhui Wang,Likun Gao
标识
DOI:10.1109/iaecst57965.2022.10062024
摘要

Intelligent identification method of indicator number of substation instrument based on deformable convolutional neural network there are many equipment in substation, and the value and scale of oil thermometer, oil level gauge, pressure gauge and other instrument equipment reflect the operation state of most instruments and meters, which is particularly important. Therefore, the research on value reading of instrument equipment in substation is particularly key. At present, for the instrument recognition of substation, most studies use traditional image processing and machine learning methods. However, in the recognition process, due to the influence of uneven illumination, complex background, rotation angle, image blur, shooting angle, proportion change and other factors, the recognition accuracy of pointer instrument is low and its usability is poor. In order to solve the above problems, this paper combines the traditional image processing technology with the deep learning method, and proposes an automatic recognition method of substation pointer instrument based on deformable convolutional neural network. The idea of deformable volume is introduced to enhance the modeling ability of convolutional neural network, so as to improve the accuracy of instrument recognition. The main idea is that firstly, the deformable convolution neural network method is used to detect the instrument image in the image, then the residual neural network is used to extract the key points of the instrument dial and pointer, then the detected key points are used to fit the dial circle and pointer, and finally the readout value is calculated according to the deflection angle of the pointer relative to the scale. The experimental results show that this method is very effective for the identification of pointer instruments, and has high accuracy and practicability, which is conducive to promoting the realization of intelligent operation and maintenance of substation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhzhy完成签到,获得积分10
1秒前
handada完成签到,获得积分10
2秒前
啦啦啦发布了新的文献求助10
2秒前
4秒前
天真映菡发布了新的文献求助30
4秒前
FashionBoy应助调皮的巧凡采纳,获得10
4秒前
顾矜应助鲜艳的初蓝采纳,获得10
5秒前
5秒前
6秒前
yuchuncheng完成签到,获得积分10
7秒前
8秒前
tanhaowen发布了新的文献求助10
8秒前
积极问晴完成签到,获得积分10
9秒前
yuchuncheng发布了新的文献求助10
10秒前
魔幻凡儿发布了新的文献求助10
10秒前
威武的灵槐完成签到,获得积分10
10秒前
无极微光应助Kototo采纳,获得20
11秒前
陈星锦发布了新的文献求助10
11秒前
12秒前
科研通AI6应助3089ggf采纳,获得10
12秒前
思源应助胡一一采纳,获得10
12秒前
郭果果发布了新的文献求助10
13秒前
落清欢发布了新的文献求助10
13秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
mashibeo应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
整齐麦片应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
liao应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
cc应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
赘婿应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
mashibeo应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458366
求助须知:如何正确求助?哪些是违规求助? 4564435
关于积分的说明 14295002
捐赠科研通 4489318
什么是DOI,文献DOI怎么找? 2458991
邀请新用户注册赠送积分活动 1448827
关于科研通互助平台的介绍 1424446