材料科学
无定形固体
电化学
晶体结构
Crystal(编程语言)
溶解
插层(化学)
过渡金属
结晶学
化学工程
无机化学
电极
物理化学
催化作用
生物化学
化学
计算机科学
工程类
程序设计语言
作者
Yumin Chen,Ling Miao,Ziyang Song,Hui Duan,Yaokang Lv,Lihua Gan,Mingxian Liu
标识
DOI:10.1002/adfm.202409428
摘要
Abstract Mn‐based oxides promise high energy density and low toxicity cathodes for aqueous zinc‐ion batteries (ZIBs) but suffer from complex irreversible phase transitions, accompanied by continuous disproportionation reactions and manganese dissolution. Tailor‐made reversible and robust crystal structure in Mn‐based material is crucial and challenging. Here a controllable electrochemical oxidation induced crystal transition strategy is developed for the transformation of cubic α ‐Mn 2 O 3 into amorphous Zn 0.17 MnO 2−n ·0.52H 2 O, which serves as the host of Zn 2+ , empowering more highly accessible built‐in zincophilic sites whilst alleviating the lattice repulsion of Zn 2+ (de)intercalation. As confirmed by crystal structure evolution characterizations and theoretical simulations, the amorphous Zn 0.17 MnO 2−n ·0.52H 2 O with excellent electronic properties and low zinc‐ion migration barrier can be reversibly converted into ZnMn 3 O 7 ·3H 2 O. This stabilized dynamic electrochemical crystal transition equilibrium contributes ultrahigh capacity (558 mAh g −1 ), high‐energy density (696 Wh kg −1 @6 kW kg −1 ), and superior stability (5000 cycles). The approach can also extend to Mn 3 O 4 and α ‐MnO 2 , opening new insights into electrochemical oxidation induced crystal conversion to build highly reversible and durable ZIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI