亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning-Based Dynamic Risk Prediction of Venous Thromboembolism for Patients With Ovarian Cancer in Real-World Settings From Electronic Health Records

医学 接收机工作特性 一致性 布里氏评分 机器学习 人工智能 多层感知器 人工神经网络 临床决策支持系统 数据挖掘 肿瘤科 内科学 计算机科学 决策支持系统
作者
Dahhay Lee,Seongyoon Kim,Sang‐Hee Lee,Hak Jin Kim,Ji Hyun Kim,Myong Cheol Lim,Hyunsoon Cho
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号:8 (8): e2300192-e2300192 被引量:1
标识
DOI:10.1200/cci.23.00192
摘要

PURPOSE Patients with epithelial ovarian cancer (EOC) have an elevated risk for venous thromboembolism (VTE). To assess the risk of VTE, models were developed by statistical or machine learning algorithms. However, few models have accommodated deep learning (DL) algorithms in realistic clinical settings. We aimed to develop a predictive DL model, exploiting rich information from electronic health records (EHRs), including dynamic clinical features and the presence of competing risks. METHODS We extracted EHRs of 1,268 patients diagnosed with EOC from January 2007 through December 2017 at the National Cancer Center, Korea. DL survival networks using fully connected layers, temporal attention, and recurrent neural networks were adopted and compared with multi-perceptron–based classification models. Prediction accuracy was independently validated in the data set of 423 patients newly diagnosed with EOC from January 2018 to December 2019. Personalized risk plots displaying the individual interval risk were developed. RESULTS DL-based survival networks achieved a superior area under the receiver operating characteristic curve (AUROC) between 0.95 and 0.98 while the AUROC of classification models was between 0.85 and 0.90. As clinical information benefits the prediction accuracy, the proposed dynamic survival network outperformed other survival networks for the test and validation data set with the highest time-dependent concordance index (0.974, 0.975) and lowest Brier score (0.051, 0.049) at 6 months after a cancer diagnosis. Our visualization showed that the interval risk fluctuating along with the changes in longitudinal clinical features. CONCLUSION Adaption of dynamic patient clinical features and accounting for competing risks from EHRs into the DL algorithms demonstrated VTE risk prediction with high accuracy. Our results show that this novel dynamic survival network can provide personalized risk prediction with the potential to assist risk-based clinical intervention to prevent VTE among patients with EOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花花完成签到,获得积分20
1秒前
炙热雅琴发布了新的文献求助10
2秒前
Lucas应助莫问题采纳,获得10
3秒前
4秒前
5秒前
chenzheng完成签到 ,获得积分10
6秒前
dzll完成签到,获得积分10
8秒前
fybd88完成签到,获得积分10
9秒前
万能图书馆应助山茱萸采纳,获得10
14秒前
14秒前
莫问题发布了新的文献求助10
20秒前
无辜的傲安完成签到,获得积分20
21秒前
22秒前
30秒前
勤奋尔冬完成签到 ,获得积分10
32秒前
38秒前
休斯顿完成签到,获得积分10
39秒前
49秒前
33完成签到 ,获得积分10
50秒前
飞常爱你哦完成签到 ,获得积分20
50秒前
斯文败类应助FATFAT采纳,获得10
53秒前
55秒前
55秒前
Dec发布了新的文献求助10
55秒前
xiaoyuyuyu完成签到 ,获得积分10
57秒前
58秒前
matrixu完成签到,获得积分10
1分钟前
莫问题完成签到,获得积分10
1分钟前
mushroom完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
搜集达人应助xjz采纳,获得10
1分钟前
一休发布了新的文献求助10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
1分钟前
罗伊黄完成签到,获得积分10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407675
求助须知:如何正确求助?哪些是违规求助? 4525191
关于积分的说明 14101408
捐赠科研通 4439018
什么是DOI,文献DOI怎么找? 2436558
邀请新用户注册赠送积分活动 1428528
关于科研通互助平台的介绍 1406604