Deep Learning-Based Dynamic Risk Prediction of Venous Thromboembolism for Patients With Ovarian Cancer in Real-World Settings From Electronic Health Records

医学 接收机工作特性 一致性 布里氏评分 机器学习 人工智能 多层感知器 人工神经网络 临床决策支持系统 数据挖掘 肿瘤科 内科学 计算机科学 决策支持系统
作者
Dahhay Lee,Seongyoon Kim,Sang‐Hee Lee,Hak Jin Kim,Ji Hyun Kim,Myong Cheol Lim,Hyunsoon Cho
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.23.00192
摘要

PURPOSE Patients with epithelial ovarian cancer (EOC) have an elevated risk for venous thromboembolism (VTE). To assess the risk of VTE, models were developed by statistical or machine learning algorithms. However, few models have accommodated deep learning (DL) algorithms in realistic clinical settings. We aimed to develop a predictive DL model, exploiting rich information from electronic health records (EHRs), including dynamic clinical features and the presence of competing risks. METHODS We extracted EHRs of 1,268 patients diagnosed with EOC from January 2007 through December 2017 at the National Cancer Center, Korea. DL survival networks using fully connected layers, temporal attention, and recurrent neural networks were adopted and compared with multi-perceptron–based classification models. Prediction accuracy was independently validated in the data set of 423 patients newly diagnosed with EOC from January 2018 to December 2019. Personalized risk plots displaying the individual interval risk were developed. RESULTS DL-based survival networks achieved a superior area under the receiver operating characteristic curve (AUROC) between 0.95 and 0.98 while the AUROC of classification models was between 0.85 and 0.90. As clinical information benefits the prediction accuracy, the proposed dynamic survival network outperformed other survival networks for the test and validation data set with the highest time-dependent concordance index (0.974, 0.975) and lowest Brier score (0.051, 0.049) at 6 months after a cancer diagnosis. Our visualization showed that the interval risk fluctuating along with the changes in longitudinal clinical features. CONCLUSION Adaption of dynamic patient clinical features and accounting for competing risks from EHRs into the DL algorithms demonstrated VTE risk prediction with high accuracy. Our results show that this novel dynamic survival network can provide personalized risk prediction with the potential to assist risk-based clinical intervention to prevent VTE among patients with EOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
健忘的金完成签到 ,获得积分10
2秒前
2秒前
3秒前
隐形曼青应助Qyyy采纳,获得10
4秒前
4秒前
听曲散步完成签到,获得积分10
5秒前
吹雪的菠萝完成签到,获得积分10
5秒前
SY发布了新的文献求助10
6秒前
6秒前
善良迎荷发布了新的文献求助10
6秒前
糖豆子发布了新的文献求助10
6秒前
BSDL发布了新的文献求助10
6秒前
leecarp发布了新的文献求助10
7秒前
杳鸢应助未来的闫院士采纳,获得80
7秒前
7秒前
毛豆应助未来的闫院士采纳,获得10
7秒前
M.完成签到 ,获得积分10
8秒前
Gracezzz完成签到 ,获得积分10
8秒前
strive发布了新的文献求助10
8秒前
材料化学左亚坤完成签到,获得积分10
8秒前
HYD发布了新的文献求助10
9秒前
dm发布了新的文献求助10
10秒前
赘婿应助靓丽的宛白采纳,获得10
11秒前
LRRAM_809应助BSDL采纳,获得10
11秒前
13秒前
或者发布了新的文献求助10
13秒前
13秒前
阿跃完成签到 ,获得积分10
13秒前
catyew完成签到 ,获得积分10
13秒前
我是老大应助乐观期待采纳,获得10
13秒前
重要代丝完成签到,获得积分10
14秒前
水濑心源完成签到,获得积分10
14秒前
hay完成签到,获得积分10
15秒前
17秒前
aaswsdw发布了新的文献求助10
17秒前
18秒前
18秒前
小二郎应助shirelylee采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458644
求助须知:如何正确求助?哪些是违规求助? 3053442
关于积分的说明 9036584
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504484
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694494