Deep Learning-Based Dynamic Risk Prediction of Venous Thromboembolism for Patients With Ovarian Cancer in Real-World Settings From Electronic Health Records

医学 接收机工作特性 一致性 布里氏评分 机器学习 人工智能 多层感知器 人工神经网络 临床决策支持系统 数据挖掘 肿瘤科 内科学 计算机科学 决策支持系统
作者
Dahhay Lee,Seongyoon Kim,Sang‐Hee Lee,Hak Jin Kim,Ji Hyun Kim,Myong Cheol Lim,Hyunsoon Cho
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号:8 (8): e2300192-e2300192 被引量:1
标识
DOI:10.1200/cci.23.00192
摘要

PURPOSE Patients with epithelial ovarian cancer (EOC) have an elevated risk for venous thromboembolism (VTE). To assess the risk of VTE, models were developed by statistical or machine learning algorithms. However, few models have accommodated deep learning (DL) algorithms in realistic clinical settings. We aimed to develop a predictive DL model, exploiting rich information from electronic health records (EHRs), including dynamic clinical features and the presence of competing risks. METHODS We extracted EHRs of 1,268 patients diagnosed with EOC from January 2007 through December 2017 at the National Cancer Center, Korea. DL survival networks using fully connected layers, temporal attention, and recurrent neural networks were adopted and compared with multi-perceptron–based classification models. Prediction accuracy was independently validated in the data set of 423 patients newly diagnosed with EOC from January 2018 to December 2019. Personalized risk plots displaying the individual interval risk were developed. RESULTS DL-based survival networks achieved a superior area under the receiver operating characteristic curve (AUROC) between 0.95 and 0.98 while the AUROC of classification models was between 0.85 and 0.90. As clinical information benefits the prediction accuracy, the proposed dynamic survival network outperformed other survival networks for the test and validation data set with the highest time-dependent concordance index (0.974, 0.975) and lowest Brier score (0.051, 0.049) at 6 months after a cancer diagnosis. Our visualization showed that the interval risk fluctuating along with the changes in longitudinal clinical features. CONCLUSION Adaption of dynamic patient clinical features and accounting for competing risks from EHRs into the DL algorithms demonstrated VTE risk prediction with high accuracy. Our results show that this novel dynamic survival network can provide personalized risk prediction with the potential to assist risk-based clinical intervention to prevent VTE among patients with EOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可积完成签到,获得积分10
刚刚
ShengjuChen完成签到 ,获得积分10
刚刚
tony发布了新的文献求助10
1秒前
健康的人生完成签到,获得积分10
1秒前
严yee发布了新的文献求助10
1秒前
2秒前
飞飞飞发布了新的文献求助10
2秒前
2秒前
刘科研完成签到,获得积分10
2秒前
kosmos完成签到,获得积分10
3秒前
3秒前
Khaos_0929完成签到,获得积分10
4秒前
5秒前
zhangmeimei完成签到,获得积分10
5秒前
化学镁铝完成签到,获得积分10
6秒前
7秒前
yyyyyy完成签到 ,获得积分10
8秒前
Satan发布了新的文献求助10
8秒前
9秒前
科研通AI6.1应助tony采纳,获得10
9秒前
怜梦完成签到,获得积分10
9秒前
cookie完成签到,获得积分10
10秒前
conveyor6发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
爆米花应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得30
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得30
12秒前
Rollei应助科研通管家采纳,获得10
12秒前
Rollei应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
李健应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734559
求助须知:如何正确求助?哪些是违规求助? 5354867
关于积分的说明 15327244
捐赠科研通 4879200
什么是DOI,文献DOI怎么找? 2621736
邀请新用户注册赠送积分活动 1570891
关于科研通互助平台的介绍 1527707