Deep Learning-Based Dynamic Risk Prediction of Venous Thromboembolism for Patients With Ovarian Cancer in Real-World Settings From Electronic Health Records

医学 接收机工作特性 一致性 布里氏评分 机器学习 人工智能 多层感知器 人工神经网络 临床决策支持系统 数据挖掘 肿瘤科 内科学 计算机科学 决策支持系统
作者
Dahhay Lee,Seongyoon Kim,Sang‐Hee Lee,Hak Jin Kim,Ji Hyun Kim,Myong Cheol Lim,Hyunsoon Cho
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.23.00192
摘要

PURPOSE Patients with epithelial ovarian cancer (EOC) have an elevated risk for venous thromboembolism (VTE). To assess the risk of VTE, models were developed by statistical or machine learning algorithms. However, few models have accommodated deep learning (DL) algorithms in realistic clinical settings. We aimed to develop a predictive DL model, exploiting rich information from electronic health records (EHRs), including dynamic clinical features and the presence of competing risks. METHODS We extracted EHRs of 1,268 patients diagnosed with EOC from January 2007 through December 2017 at the National Cancer Center, Korea. DL survival networks using fully connected layers, temporal attention, and recurrent neural networks were adopted and compared with multi-perceptron–based classification models. Prediction accuracy was independently validated in the data set of 423 patients newly diagnosed with EOC from January 2018 to December 2019. Personalized risk plots displaying the individual interval risk were developed. RESULTS DL-based survival networks achieved a superior area under the receiver operating characteristic curve (AUROC) between 0.95 and 0.98 while the AUROC of classification models was between 0.85 and 0.90. As clinical information benefits the prediction accuracy, the proposed dynamic survival network outperformed other survival networks for the test and validation data set with the highest time-dependent concordance index (0.974, 0.975) and lowest Brier score (0.051, 0.049) at 6 months after a cancer diagnosis. Our visualization showed that the interval risk fluctuating along with the changes in longitudinal clinical features. CONCLUSION Adaption of dynamic patient clinical features and accounting for competing risks from EHRs into the DL algorithms demonstrated VTE risk prediction with high accuracy. Our results show that this novel dynamic survival network can provide personalized risk prediction with the potential to assist risk-based clinical intervention to prevent VTE among patients with EOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慢性病牛马完成签到,获得积分10
刚刚
solitudeyy11完成签到,获得积分10
1秒前
大个应助小张不在采纳,获得10
1秒前
小月亮给MalowZhang的求助进行了留言
2秒前
小二郎应助WS采纳,获得10
2秒前
布丁发布了新的文献求助10
2秒前
2秒前
3秒前
缥缈孤鸿影完成签到,获得积分10
3秒前
吃货发布了新的文献求助10
4秒前
4秒前
lull发布了新的文献求助10
4秒前
5秒前
5秒前
未解的波发布了新的文献求助10
6秒前
oooy应助科研通管家采纳,获得10
7秒前
yar应助科研通管家采纳,获得10
7秒前
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
小林发布了新的文献求助10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
lyl19880908应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
薰硝壤应助科研通管家采纳,获得30
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Jasper应助科研毛毛从采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI2S应助武雨寒采纳,获得10
10秒前
布丁完成签到,获得积分10
10秒前
10秒前
Orange应助毛豆采纳,获得10
11秒前
创新发布了新的文献求助10
11秒前
12秒前
qwf发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055112
求助须知:如何正确求助?哪些是违规求助? 2711905
关于积分的说明 7428965
捐赠科研通 2356735
什么是DOI,文献DOI怎么找? 1248250
科研通“疑难数据库(出版商)”最低求助积分说明 606641
版权声明 596083