Deep Learning-Based Dynamic Risk Prediction of Venous Thromboembolism for Patients With Ovarian Cancer in Real-World Settings From Electronic Health Records

医学 接收机工作特性 一致性 布里氏评分 机器学习 人工智能 多层感知器 人工神经网络 临床决策支持系统 数据挖掘 肿瘤科 内科学 计算机科学 决策支持系统
作者
Dahhay Lee,Seongyoon Kim,Sang‐Hee Lee,Hak Jin Kim,Ji Hyun Kim,Myong Cheol Lim,Hyunsoon Cho
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号: (8)
标识
DOI:10.1200/cci.23.00192
摘要

PURPOSE Patients with epithelial ovarian cancer (EOC) have an elevated risk for venous thromboembolism (VTE). To assess the risk of VTE, models were developed by statistical or machine learning algorithms. However, few models have accommodated deep learning (DL) algorithms in realistic clinical settings. We aimed to develop a predictive DL model, exploiting rich information from electronic health records (EHRs), including dynamic clinical features and the presence of competing risks. METHODS We extracted EHRs of 1,268 patients diagnosed with EOC from January 2007 through December 2017 at the National Cancer Center, Korea. DL survival networks using fully connected layers, temporal attention, and recurrent neural networks were adopted and compared with multi-perceptron–based classification models. Prediction accuracy was independently validated in the data set of 423 patients newly diagnosed with EOC from January 2018 to December 2019. Personalized risk plots displaying the individual interval risk were developed. RESULTS DL-based survival networks achieved a superior area under the receiver operating characteristic curve (AUROC) between 0.95 and 0.98 while the AUROC of classification models was between 0.85 and 0.90. As clinical information benefits the prediction accuracy, the proposed dynamic survival network outperformed other survival networks for the test and validation data set with the highest time-dependent concordance index (0.974, 0.975) and lowest Brier score (0.051, 0.049) at 6 months after a cancer diagnosis. Our visualization showed that the interval risk fluctuating along with the changes in longitudinal clinical features. CONCLUSION Adaption of dynamic patient clinical features and accounting for competing risks from EHRs into the DL algorithms demonstrated VTE risk prediction with high accuracy. Our results show that this novel dynamic survival network can provide personalized risk prediction with the potential to assist risk-based clinical intervention to prevent VTE among patients with EOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞七应助MADKAI采纳,获得10
刚刚
Akim应助MADKAI采纳,获得20
刚刚
科研通AI5应助MADKAI采纳,获得10
刚刚
充电宝应助MADKAI采纳,获得10
刚刚
buno应助MADKAI采纳,获得10
刚刚
刚刚
小唐完成签到 ,获得积分0
2秒前
思源应助年轻的咖啡豆采纳,获得10
2秒前
4秒前
科研通AI5应助junc采纳,获得20
4秒前
绿洲完成签到,获得积分10
5秒前
5秒前
yf_zhu发布了新的文献求助10
5秒前
正直亦旋发布了新的文献求助10
5秒前
6秒前
华仔应助招财不肥采纳,获得10
6秒前
健康的梦曼完成签到 ,获得积分10
6秒前
最最最发布了新的文献求助10
6秒前
科研是什么鬼完成签到,获得积分10
8秒前
8秒前
9秒前
欢喜素阴完成签到 ,获得积分10
10秒前
yirenli完成签到,获得积分10
10秒前
希望天下0贩的0应助DAYTOY采纳,获得10
10秒前
狮子座完成签到,获得积分10
10秒前
爆米花应助润润轩轩采纳,获得10
10秒前
12秒前
熊boy完成签到,获得积分10
12秒前
1233完成签到,获得积分10
12秒前
Chang发布了新的文献求助10
12秒前
111222发布了新的文献求助50
12秒前
wxd发布了新的文献求助10
13秒前
上官若男应助浅笑采纳,获得10
14秒前
英姑应助Lxxixixi采纳,获得10
14秒前
斯文败类应助lichaoyes采纳,获得10
14秒前
aaaaa完成签到,获得积分10
14秒前
唉呦嘿发布了新的文献求助10
15秒前
共享精神应助迅速宛筠采纳,获得10
15秒前
上上谦应助酷炫过客采纳,获得10
15秒前
脑洞疼应助酷炫过客采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762