Turning to immunosuppressive tumors: Deciphering the immunosenescence-related microenvironment and prognostic characteristics in pancreatic cancer, in which GLUT1 contributes to gemcitabine resistance

免疫衰老 吉西他滨 肿瘤微环境 胰腺癌 肿瘤科 内科学 医学 癌症 癌症研究 免疫学 免疫系统
作者
Siyuan Lu,Qiong‐Cong Xu,De-Liang Fang,Yin-Hao Shi,Ying‐Qin Zhu,Zhide Liu,Mingjian Ma,Jing‐Yuan Ye,Xiao Yu Yin
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (17): e36684-e36684 被引量:1
标识
DOI:10.1016/j.heliyon.2024.e36684
摘要

Increasing evidence indicates that the remodeling of immune microenvironment heterogeneity influences pancreatic cancer development, as well as sensitivity to chemotherapy and immunotherapy. However, a gap remains in the exploration of the immunosenescence microenvironment in pancreatic cancer. In this study, we identified two immunosenescence-associated isoforms (IMSP1 and IMSP2), with consequential differences in prognosis and immune cell infiltration. We constructed the MLIRS score, a hazard score system with robust prognostic performance (area under the curve, AUC = 0.91), based on multiple machine learning algorithms (101 cross-validation methods). Patients in the high MLIRS score group had worse prognosis (P < 0.0001) and lower abundance of immune cell infiltration. Conversely, the low MLIRS score group showed better sensitivity to chemotherapy and immunotherapy. Additionally, our MLIRS system outperformed 68 other published signatures. We identified the immunosenescence microenvironmental windsock GLUT1 with certain co-expression properties with immunosenescence markers. We further demonstrated its positive modulation ability of proliferation, migration, and gemcitabine resistance in pancreatic cancer cells. To conclude, our study focused on training of composite machine learning algorithms in multiple datasets to develop a robust machine learning modeling system based on immunosenescence and to identify an immunosenescence-related microenvironment windsock, providing direction and guidance for clinical prediction and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
七页禾完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
桐桐应助傻子与白痴采纳,获得10
4秒前
4秒前
顾矜应助开心的凝云采纳,获得10
5秒前
5秒前
CodeCraft应助植物代谢采纳,获得10
5秒前
祗想静静嘚完成签到 ,获得积分10
5秒前
5秒前
6秒前
Criminology34应助feng采纳,获得10
6秒前
dz发布了新的文献求助10
6秒前
someone完成签到,获得积分10
6秒前
6秒前
6秒前
Airi完成签到,获得积分10
7秒前
8秒前
8秒前
文艺班发布了新的文献求助10
8秒前
俭朴新之完成签到 ,获得积分10
8秒前
QI完成签到 ,获得积分10
9秒前
10秒前
Jeffrey完成签到,获得积分10
10秒前
科研通AI6应助盼盼527采纳,获得10
11秒前
11秒前
12秒前
wxq发布了新的文献求助10
12秒前
英吉利25发布了新的文献求助30
12秒前
勤恳马里奥完成签到,获得积分0
13秒前
13秒前
13秒前
ningwu完成签到,获得积分10
13秒前
zhangjincheng完成签到,获得积分10
13秒前
14秒前
garden发布了新的文献求助10
14秒前
暴躁的凝云完成签到,获得积分10
14秒前
fjmelite完成签到 ,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4920881
求助须知:如何正确求助?哪些是违规求助? 4192265
关于积分的说明 13020962
捐赠科研通 3963415
什么是DOI,文献DOI怎么找? 2172449
邀请新用户注册赠送积分活动 1190294
关于科研通互助平台的介绍 1099258