Deciphering language disturbances in schizophrenia: A study using fine-tuned language models

精神分裂症(面向对象编程) 逻辑回归 多元统计 心理学 自然语言处理 语言模型 联想(心理学) 阳性与阴性症状量表 语言学 人工智能 计算机科学 二元分类 精神病 机器学习 精神科 哲学 支持向量机 心理治疗师
作者
Renyu Li,Minne Cao,Da‐Wei Fu,Wei Wei,Dequan Wang,Zhaoxia Yuan,Ruofei Hu,Wei Deng
出处
期刊:Schizophrenia Research [Elsevier BV]
卷期号:271: 120-128 被引量:2
标识
DOI:10.1016/j.schres.2024.07.016
摘要

This research presents two stable language metrics, namely Successful Prediction Rate (SPR) and Disfluency (DF), to objectively quantify the linguistic disturbances associated with schizophrenia. These novel language metrics can capture both off-topic responses and incoherence in patients' speech by modeling speech information and fine-tuning techniques. Additionally, these metrics exhibit cultural sensitivity while providing a more comprehensive evaluation of linguistic abnormalities in schizophrenia. This research fine-tuned the ELECTRA Pretrained Language Model on a 750 MB text corpus obtained from major Chinese mental health forums. The effectiveness of the fine-tuned language model is verified on a group comprising 38 individuals diagnosed with schizophrenia and 25 meticulously matched healthy controls. The study explores the association between the fine-tuned language model and the Positive and Negative Syndrome Scale (PANSS) items. The results demonstrate that SPR is higher in healthy controls, indicating better language understanding by the pre-trained language model. Conversely, DF is higher in individuals with schizophrenia, indicating more inconsistent language structure. The relationship between linguistic features and P2 (conceptual disorganization) reveals that patients with positive P2 exhibit lower SPR and higher DF. Binary logistic regression using the combined SPR and DF features achieves 84.5 % accuracy in classifying P2, exceeding the performance of traditional features by 20.5 %. Moreover, the proposed linguistic features outperform traditional linguistic features in discriminating FTD (formal thought disorder), as demonstrated by multivariate linear regression analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁真真发布了新的文献求助10
刚刚
哆啦梦发布了新的文献求助10
1秒前
任性迎南发布了新的文献求助10
3秒前
4秒前
4秒前
所所应助研友_ZAVbe8采纳,获得30
5秒前
ybheqiang123456完成签到,获得积分10
6秒前
搜集达人应助任性迎南采纳,获得10
8秒前
呼延水云发布了新的文献求助10
8秒前
bbdd2334发布了新的文献求助10
8秒前
唯美完成签到,获得积分10
8秒前
毛毛发布了新的文献求助10
9秒前
上官若男应助标致的白桃采纳,获得10
11秒前
13秒前
13秒前
14秒前
14秒前
没有昵称发布了新的文献求助10
17秒前
Aqua发布了新的文献求助20
17秒前
兔子完成签到,获得积分10
17秒前
Owen应助bbdd2334采纳,获得10
18秒前
lzx发布了新的文献求助10
19秒前
林临林应助张浩毅采纳,获得10
19秒前
荷包蛋发布了新的文献求助10
20秒前
存慎完成签到 ,获得积分10
21秒前
jhp完成签到 ,获得积分10
21秒前
22秒前
热心市民小红花应助ZSW采纳,获得10
22秒前
凡迪亚比应助李锐采纳,获得30
24秒前
埃特纳氏完成签到 ,获得积分10
25秒前
英俊的铭应助Aqua采纳,获得10
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
漂亮的雪糕完成签到,获得积分10
29秒前
知许解夏应助李锐采纳,获得10
30秒前
知许解夏应助李锐采纳,获得10
30秒前
Merlin应助李锐采纳,获得30
30秒前
菠萝吹雪完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824