Deciphering language disturbances in schizophrenia: A study using fine-tuned language models

精神分裂症(面向对象编程) 逻辑回归 多元统计 心理学 自然语言处理 语言模型 联想(心理学) 阳性与阴性症状量表 语言学 人工智能 计算机科学 二元分类 精神病 机器学习 精神科 哲学 支持向量机 心理治疗师
作者
Renyu Li,Minne Cao,Da‐Wei Fu,Wei Wei,Dequan Wang,Zhaoxia Yuan,Ruofei Hu,Wei Deng
出处
期刊:Schizophrenia Research [Elsevier]
卷期号:271: 120-128 被引量:2
标识
DOI:10.1016/j.schres.2024.07.016
摘要

This research presents two stable language metrics, namely Successful Prediction Rate (SPR) and Disfluency (DF), to objectively quantify the linguistic disturbances associated with schizophrenia. These novel language metrics can capture both off-topic responses and incoherence in patients' speech by modeling speech information and fine-tuning techniques. Additionally, these metrics exhibit cultural sensitivity while providing a more comprehensive evaluation of linguistic abnormalities in schizophrenia. This research fine-tuned the ELECTRA Pretrained Language Model on a 750 MB text corpus obtained from major Chinese mental health forums. The effectiveness of the fine-tuned language model is verified on a group comprising 38 individuals diagnosed with schizophrenia and 25 meticulously matched healthy controls. The study explores the association between the fine-tuned language model and the Positive and Negative Syndrome Scale (PANSS) items. The results demonstrate that SPR is higher in healthy controls, indicating better language understanding by the pre-trained language model. Conversely, DF is higher in individuals with schizophrenia, indicating more inconsistent language structure. The relationship between linguistic features and P2 (conceptual disorganization) reveals that patients with positive P2 exhibit lower SPR and higher DF. Binary logistic regression using the combined SPR and DF features achieves 84.5 % accuracy in classifying P2, exceeding the performance of traditional features by 20.5 %. Moreover, the proposed linguistic features outperform traditional linguistic features in discriminating FTD (formal thought disorder), as demonstrated by multivariate linear regression analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助小鲨采纳,获得10
1秒前
南极的企鹅365完成签到 ,获得积分10
1秒前
呜呜呜呜呜呜呜呜完成签到,获得积分10
1秒前
1秒前
zz发布了新的文献求助10
2秒前
chengcheng完成签到,获得积分10
2秒前
GGbone完成签到,获得积分10
3秒前
连牙蓝上了吗完成签到 ,获得积分10
3秒前
个性的紫菜应助宇宙之大采纳,获得10
6秒前
mhl11应助宇宙之大采纳,获得10
6秒前
JunHan完成签到,获得积分10
7秒前
田田完成签到,获得积分10
8秒前
英姑应助科研通管家采纳,获得30
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
Singularity应助科研通管家采纳,获得10
8秒前
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
8秒前
pluto应助HRBJ采纳,获得100
10秒前
QQWQEQRQ完成签到,获得积分10
12秒前
nenoaowu发布了新的文献求助10
12秒前
南波万完成签到,获得积分20
12秒前
KK发布了新的文献求助10
13秒前
Julien完成签到,获得积分10
15秒前
Orange应助QQWQEQRQ采纳,获得10
15秒前
苗条的采枫完成签到 ,获得积分10
15秒前
Jocd完成签到,获得积分10
15秒前
16秒前
17秒前
酒笙完成签到,获得积分10
18秒前
yiyiyi完成签到 ,获得积分10
18秒前
泽锦臻完成签到 ,获得积分10
19秒前
EurekaOvo发布了新的文献求助10
20秒前
zgt01应助nenoaowu采纳,获得10
21秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3315307
求助须知:如何正确求助?哪些是违规求助? 2947285
关于积分的说明 8535103
捐赠科研通 2623400
什么是DOI,文献DOI怎么找? 1435028
科研通“疑难数据库(出版商)”最低求助积分说明 665445
邀请新用户注册赠送积分活动 651155