Learning to Balance Altruism and Self-interest Based on Empathy in Mixed-Motive Games

移情 利他主义(生物学) 平衡(能力) 自利 社会心理学 心理学 经济 微观经济学 神经科学
作者
Fanqi Kong,Yizhe Huang,Song‐Chun Zhu,Siyuan Qi,Feng Xue
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.07863
摘要

Real-world multi-agent scenarios often involve mixed motives, demanding altruistic agents capable of self-protection against potential exploitation. However, existing approaches often struggle to achieve both objectives. In this paper, based on that empathic responses are modulated by inferred social relationships between agents, we propose LASE Learning to balance Altruism and Self-interest based on Empathy), a distributed multi-agent reinforcement learning algorithm that fosters altruistic cooperation through gifting while avoiding exploitation by other agents in mixed-motive games. LASE allocates a portion of its rewards to co-players as gifts, with this allocation adapting dynamically based on the social relationship -- a metric evaluating the friendliness of co-players estimated by counterfactual reasoning. In particular, social relationship measures each co-player by comparing the estimated $Q$-function of current joint action to a counterfactual baseline which marginalizes the co-player's action, with its action distribution inferred by a perspective-taking module. Comprehensive experiments are performed in spatially and temporally extended mixed-motive games, demonstrating LASE's ability to promote group collaboration without compromising fairness and its capacity to adapt policies to various types of interactive co-players.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小吴同学完成签到,获得积分10
1秒前
1秒前
2秒前
SCIBUDDY发布了新的文献求助10
2秒前
扬之水发布了新的文献求助10
3秒前
4秒前
5秒前
min发布了新的文献求助10
6秒前
7秒前
科研通AI5应助菜菜子采纳,获得10
8秒前
sunyawen发布了新的文献求助10
9秒前
9秒前
朱洛尘完成签到 ,获得积分10
9秒前
Russell发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
nikonikoni发布了新的文献求助10
13秒前
SCIBUDDY完成签到,获得积分10
15秒前
ZYF发布了新的文献求助10
17秒前
薛吒发布了新的文献求助20
18秒前
哭泣青烟完成签到,获得积分10
19秒前
19秒前
19秒前
Jasper应助云青采纳,获得10
20秒前
20秒前
20秒前
21秒前
lxcy0612完成签到,获得积分10
21秒前
科研通AI5应助Russell采纳,获得10
21秒前
devil50506发布了新的文献求助10
22秒前
23秒前
哭泣青烟发布了新的文献求助10
23秒前
24秒前
25秒前
66666发布了新的文献求助10
26秒前
pluto应助小小鱼采纳,获得20
27秒前
隐形曼青应助YAFD采纳,获得10
27秒前
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738248
求助须知:如何正确求助?哪些是违规求助? 3281724
关于积分的说明 10026477
捐赠科研通 2998622
什么是DOI,文献DOI怎么找? 1645291
邀请新用户注册赠送积分活动 782740
科研通“疑难数据库(出版商)”最低求助积分说明 749891