Prediction of Anti‐Freezing Proteins From Their Evolutionary Profile

计算机科学 预测建模 机器学习 人工智能 抗冻蛋白 数据挖掘 化学 生物化学
作者
Nishant Kumar,Shubham Choudhury,Nisha Bajiya,Sumeet Patiyal,Gajendra P. S. Raghava
出处
期刊:Proteomics [Wiley]
被引量:3
标识
DOI:10.1002/pmic.202400157
摘要

ABSTRACT Prediction of antifreeze proteins (AFPs) holds significant importance due to their diverse applications in healthcare. An inherent limitation of current AFP prediction methods is their reliance on unreviewed proteins for evaluation. This study evaluates, proposed and existing methods on an independent dataset containing 80 AFPs and 73 non‐AFPs obtained from Uniport, which have been already reviewed by experts. Initially, we constructed machine learning models for AFP prediction using selected composition‐based protein features and achieved a peak AUROC of 0.90 with an MCC of 0.69 on the independent dataset. Subsequently, we observed a notable enhancement in model performance, with the AUROC increasing from 0.90 to 0.93 upon incorporating evolutionary information instead of relying solely on the primary sequence of proteins. Furthermore, we explored hybrid models integrating our machine learning approaches with BLAST‐based similarity and motif‐based methods. However, the performance of these hybrid models either matched or was inferior to that of our best machine‐learning model. Our best model based on evolutionary information outperforms all existing methods on independent/validation dataset. To facilitate users, a user‐friendly web server with a standalone package named “AFPropred” was developed ( https://webs.iiitd.edu.in/raghava/afpropred ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助ye采纳,获得10
1秒前
132发布了新的文献求助10
1秒前
牛肉mianbo发布了新的文献求助10
1秒前
xxf发布了新的文献求助10
1秒前
隐形曼青应助xiaomage采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
小丸子的樱桃红完成签到,获得积分10
4秒前
邱文县发布了新的文献求助10
4秒前
Mao关闭了Mao文献求助
4秒前
小郭完成签到,获得积分10
4秒前
jzt12138发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
FranklinQaQ完成签到,获得积分10
6秒前
6秒前
三莫莫莫发布了新的文献求助20
6秒前
大模型应助荒林采纳,获得30
6秒前
尔舟行发布了新的文献求助10
6秒前
7秒前
7秒前
大营村完成签到,获得积分10
7秒前
8秒前
实验顺利完成签到 ,获得积分20
9秒前
伪话痨家发布了新的文献求助30
9秒前
balenidezhupi发布了新的文献求助10
9秒前
10秒前
10秒前
tutu发布了新的文献求助10
10秒前
科研狗完成签到,获得积分10
10秒前
直率铃铛2发布了新的文献求助10
10秒前
核桃应助哦哦采纳,获得30
11秒前
12秒前
研究啥完成签到,获得积分20
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
重要建辉发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667