Topology optimization of hard-magnetic soft phononic structures for wide magnetically tunable band gaps

拓扑优化 材料科学 拓扑(电路) 带隙 凝聚态物理 物理 有限元法 工程类 电气工程 热力学
作者
Zeeshan Alam,Atul Kumar Sharma
出处
期刊:Journal of Applied Mechanics [ASME International]
卷期号:91 (10) 被引量:4
标识
DOI:10.1115/1.4065902
摘要

Abstract Hard-magnetic soft materials, which exhibit finite deformation under magnetic loading, have emerged as a promising class of soft active materials for the development of phononic structures with tunable elastic wave band gap characteristics. In this paper, we present a gradient-based topology optimization framework for designing the hard-magnetic soft materials-based two-phase phononic structures with wide and magnetically tunable anti-plane shear wave band gaps. The incompressible Gent hyperelastic material model, along with the ideal hard-magnetic soft material model, is used to characterize the constitutive behavior of the hard-magnetic soft phononic structure phases. To extract the dispersion curves, an in-house finite element model in conjunction with Bloch’s theorem is employed. The method of moving asymptotes is used to iteratively update the design variables and obtain the optimal distribution of the hard-magnetic soft phases within the phononic structure unit cell. Analytical sensitivity analysis is performed to evaluate the gradient of the band gap maximization function with respect to each one of the design variables. Numerical results show that the optimized phononic structures exhibit a wide band gap width in comparison to a standard hard-magnetic soft phononic structure with a central circular inclusion, demonstrating the effectiveness of the proposed numerical framework. The numerical framework presented in this study, along with the derived conclusions, can serve as a valuable guide for the design and development of futuristic tunable wave manipulators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿会完成签到,获得积分10
刚刚
刚刚
木木完成签到,获得积分10
1秒前
1秒前
jinmuna完成签到,获得积分10
1秒前
英姑应助无可奈何采纳,获得10
2秒前
米大王发布了新的文献求助10
2秒前
2秒前
失眠的耳机完成签到,获得积分10
2秒前
3秒前
激昂的如萱完成签到,获得积分10
3秒前
田様应助B612小行星采纳,获得10
3秒前
4秒前
healthy完成签到 ,获得积分10
4秒前
皓轩发布了新的文献求助10
5秒前
6秒前
6秒前
高歌猛进完成签到,获得积分10
6秒前
6秒前
7秒前
whale完成签到,获得积分10
8秒前
挺喜欢你发布了新的文献求助10
8秒前
8秒前
CEJ发布了新的文献求助10
8秒前
fox发布了新的文献求助10
9秒前
宁乌发布了新的文献求助10
9秒前
9秒前
ab古完成签到,获得积分10
9秒前
科研通AI5应助勤劳晓亦采纳,获得10
10秒前
11秒前
lily发布了新的文献求助10
11秒前
12秒前
ziwei发布了新的文献求助10
12秒前
12秒前
Zn应助文静灵阳采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
三条鱼发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525386
求助须知:如何正确求助?哪些是违规求助? 3105990
关于积分的说明 9277903
捐赠科研通 2803436
什么是DOI,文献DOI怎么找? 1538711
邀请新用户注册赠送积分活动 716339
科研通“疑难数据库(出版商)”最低求助积分说明 709395