已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The role of radiomics for predicting of lymph-vascular space invasion in cervical cancer patients based on artificial intelligence: a systematic review and meta-analysis

医学 无线电技术 荟萃分析 宫颈癌 癌症 肿瘤科 病理 内科学 放射科
作者
Mengli Zhao,Zhen Li,X. Gu,Xiaojing Yang,Zhongrong Gao,Shanshan Wang,Jie Fu
出处
期刊:Journal of Gynecologic Oncology [Asian Society of Gynecologic Oncology; Korean Society of Gynecologic Oncology and Colposcopy]
卷期号:36
标识
DOI:10.3802/jgo.2025.36.e26
摘要

The primary aim of this study was to conduct a methodical examination and assessment of the prognostic efficacy exhibited by magnetic resonance imaging (MRI)-derived radiomic models concerning the preoperative prediction of lymph-vascular space infiltration (LVSI) in cervical cancer cases. A comprehensive and thorough exploration of pertinent academic literature was undertaken by two investigators, employing the resources of the Embase, PubMed, Web of Science, and Cochrane Library databases. The scope of this research was bounded by a publication cutoff date of May 15, 2023. The inclusion criteria encompassed studies that utilized radiomic models based on MRI to prognosticate the accuracy of preoperative LVSI estimation in instances of cervical cancer. The Diagnostic Accuracy Studies-2 framework and the Radiomic Quality Score metric were employed. This investigation included nine distinct research studies, enrolling a total of 1,406 patients. The diagnostic performance metrics of MRI-based radiomic models in the prediction of preoperative LVSI among cervical cancer patients were determined as follows: sensitivity of 83% (95% confidence interval [CI]=77%-87%), specificity of 74% (95% CI=69%-79%), and a corresponding AUC of summary receiver operating characteristic measuring 0.86 (95% CI=0.82-0.88). The results of the synthesized meta-analysis did not reveal substantial heterogeneity.This meta-analysis suggests the robust diagnostic proficiency of the MRI-based radiomic model in the prognostication of preoperative LVSI within the cohort of cervical cancer patients. In the future, radiomics holds the potential to emerge as a widely applicable noninvasive modality for the early detection of LVSI in the context of cervical cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
持卿发布了新的文献求助10
刚刚
刚刚
北觅完成签到 ,获得积分10
1秒前
荒谬发布了新的文献求助10
1秒前
深情安青应助牧百川采纳,获得30
4秒前
oliv完成签到 ,获得积分10
6秒前
小鸟芋圆露露完成签到 ,获得积分10
6秒前
6秒前
Maggie完成签到,获得积分10
6秒前
耳机单蹦完成签到,获得积分10
6秒前
Lily完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助xiaixax采纳,获得10
9秒前
10秒前
孟筱完成签到 ,获得积分10
10秒前
持卿发布了新的文献求助10
10秒前
大牛牛应助C0cc采纳,获得10
11秒前
大牛牛应助C0cc采纳,获得10
11秒前
大牛牛应助C0cc采纳,获得10
11秒前
搜集达人应助耳机单蹦采纳,获得10
11秒前
持卿发布了新的文献求助10
11秒前
beloved完成签到 ,获得积分10
15秒前
H语发布了新的文献求助10
16秒前
fane发布了新的文献求助10
20秒前
3113129605完成签到 ,获得积分10
26秒前
安静无招完成签到 ,获得积分10
26秒前
情怀应助荒谬采纳,获得10
26秒前
aya完成签到 ,获得积分20
27秒前
30秒前
研友_Z30GJ8完成签到 ,获得积分0
33秒前
科研fw完成签到 ,获得积分10
35秒前
sissiarno应助fane采纳,获得30
42秒前
沐舒发布了新的文献求助10
46秒前
47秒前
hy发布了新的文献求助10
48秒前
yaoyaoyao完成签到 ,获得积分10
49秒前
领导范儿应助ddx采纳,获得10
50秒前
慕青应助GK采纳,获得10
50秒前
个木发布了新的文献求助10
51秒前
wcy完成签到 ,获得积分10
52秒前
dhxhxbdnnx发布了新的文献求助10
53秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392752
求助须知:如何正确求助?哪些是违规求助? 3003307
关于积分的说明 8808666
捐赠科研通 2690088
什么是DOI,文献DOI怎么找? 1473431
科研通“疑难数据库(出版商)”最低求助积分说明 681571
邀请新用户注册赠送积分活动 674491