清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ToxinPred 3.0: An improved method for predicting the toxicity of peptides

毒性 人工智能 机器学习 深度学习 计算机科学 化学 有机化学
作者
Anand Singh Rathore,Shubham Choudhury,Akanksha Arora,P. A. Tijare,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108926-108926 被引量:93
标识
DOI:10.1016/j.compbiomed.2024.108926
摘要

Toxicity emerges as a prominent challenge in the design of therapeutic peptides, causing the failure of numerous peptides during clinical trials. In 2013, our group developed ToxinPred, a computational method that has been extensively adopted by the scientific community for predicting peptide toxicity. In this paper, we propose a refined variant of ToxinPred that showcases improved reliability and accuracy in predicting peptide toxicity. Initially, we utilized a similarity/alignment-based approach employing BLAST to predict toxic peptides, which yielded satisfactory accuracy; however, the method suffered from inadequate coverage. Subsequently, we employed a motif-based approach using MERCI software to uncover specific patterns or motifs that are exclusively observed in toxic peptides. The search for these motifs in peptides allowed us to predict toxic peptides with a high level of specificity with poor sensitivity. To overcome the coverage limitations, we developed alignment-free methods using machine/deep learning techniques to balance sensitivity and specificity of prediction. Deep learning model (ANN - LSTM with fixed sequence length) developed using one-hot encoding achieved a maximum AUROC of 0.93 with MCC of 0.71 on an independent dataset. Machine learning model (extra tree) developed using compositional features of peptides achieved a maximum AUROC of 0.95 with MCC of 0.78. We also developed large language models and achieved maximum AUC of 0.93 using ESM2-t33. Finally, we developed hybrid or ensemble methods combining two or more methods to enhance performance. Our specific hybrid method, which combines a motif-based approach with a machine learning-based model, achieved a maximum AUROC of 0.98 with MCC 0.81 on an independent dataset. In this study, all models were trained and tested on 80 % of data using five-fold cross-validation and evaluated on the remaining 20 % of data called independent dataset. The evaluation of all methods on an independent dataset revealed that the method proposed in this study exhibited better performance than existing methods. To cater to the needs of the scientific community, we have developed a standalone software, pip package and web-based server ToxinPred3 (https://github.com/raghavagps/toxinpred3 and https://webs.iiitd.edu.in/raghava/toxinpred3/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tranphucthinh完成签到,获得积分10
5秒前
拼搏的帽子完成签到 ,获得积分10
13秒前
荀万声完成签到,获得积分10
15秒前
外向的芒果完成签到 ,获得积分10
38秒前
Singularity应助辞安采纳,获得10
41秒前
科研通AI6应助辞安采纳,获得10
41秒前
彭于晏应助科研通管家采纳,获得10
47秒前
xiaofeixia完成签到 ,获得积分10
51秒前
cyskdsn完成签到 ,获得积分10
53秒前
自然代亦完成签到 ,获得积分10
54秒前
冷傲凝琴完成签到,获得积分10
1分钟前
Gryff完成签到 ,获得积分10
1分钟前
sll完成签到 ,获得积分10
1分钟前
zzh完成签到 ,获得积分10
1分钟前
1分钟前
Heart_of_Stone完成签到 ,获得积分10
1分钟前
智者雨人完成签到 ,获得积分10
1分钟前
momo完成签到 ,获得积分10
1分钟前
huyuan完成签到,获得积分10
1分钟前
1分钟前
尹静涵完成签到 ,获得积分10
1分钟前
浮游应助有魅力的又菱采纳,获得10
1分钟前
甜乎贝贝完成签到 ,获得积分10
1分钟前
ajun完成签到,获得积分10
1分钟前
丢硬币的小孩完成签到,获得积分10
2分钟前
欢呼的茗茗完成签到 ,获得积分10
2分钟前
温如军完成签到 ,获得积分10
2分钟前
67完成签到 ,获得积分10
2分钟前
cy0824完成签到 ,获得积分10
3分钟前
懒得起名字完成签到 ,获得积分10
4分钟前
32429606完成签到 ,获得积分10
4分钟前
ming发布了新的文献求助10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
mike2012完成签到 ,获得积分10
4分钟前
打打应助med_wudi采纳,获得10
4分钟前
彩色的芷容完成签到 ,获得积分10
4分钟前
5分钟前
现代CC完成签到 ,获得积分10
5分钟前
med_wudi发布了新的文献求助10
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211829
求助须知:如何正确求助?哪些是违规求助? 4388188
关于积分的说明 13663641
捐赠科研通 4248518
什么是DOI,文献DOI怎么找? 2330992
邀请新用户注册赠送积分活动 1328709
关于科研通互助平台的介绍 1281857