重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

ToxinPred 3.0: An improved method for predicting the toxicity of peptides

毒性 人工智能 机器学习 深度学习 计算机科学 化学 有机化学
作者
Anand Singh Rathore,Shubham Choudhury,Akanksha Arora,P. A. Tijare,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:179: 108926-108926 被引量:130
标识
DOI:10.1016/j.compbiomed.2024.108926
摘要

Toxicity emerges as a prominent challenge in the design of therapeutic peptides, causing the failure of numerous peptides during clinical trials. In 2013, our group developed ToxinPred, a computational method that has been extensively adopted by the scientific community for predicting peptide toxicity. In this paper, we propose a refined variant of ToxinPred that showcases improved reliability and accuracy in predicting peptide toxicity. Initially, we utilized a similarity/alignment-based approach employing BLAST to predict toxic peptides, which yielded satisfactory accuracy; however, the method suffered from inadequate coverage. Subsequently, we employed a motif-based approach using MERCI software to uncover specific patterns or motifs that are exclusively observed in toxic peptides. The search for these motifs in peptides allowed us to predict toxic peptides with a high level of specificity with poor sensitivity. To overcome the coverage limitations, we developed alignment-free methods using machine/deep learning techniques to balance sensitivity and specificity of prediction. Deep learning model (ANN - LSTM with fixed sequence length) developed using one-hot encoding achieved a maximum AUROC of 0.93 with MCC of 0.71 on an independent dataset. Machine learning model (extra tree) developed using compositional features of peptides achieved a maximum AUROC of 0.95 with MCC of 0.78. We also developed large language models and achieved maximum AUC of 0.93 using ESM2-t33. Finally, we developed hybrid or ensemble methods combining two or more methods to enhance performance. Our specific hybrid method, which combines a motif-based approach with a machine learning-based model, achieved a maximum AUROC of 0.98 with MCC 0.81 on an independent dataset. In this study, all models were trained and tested on 80 % of data using five-fold cross-validation and evaluated on the remaining 20 % of data called independent dataset. The evaluation of all methods on an independent dataset revealed that the method proposed in this study exhibited better performance than existing methods. To cater to the needs of the scientific community, we have developed a standalone software, pip package and web-based server ToxinPred3 (https://github.com/raghavagps/toxinpred3 and https://webs.iiitd.edu.in/raghava/toxinpred3/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
虚心白开水完成签到,获得积分10
2秒前
拓跋半仙完成签到,获得积分0
2秒前
无问西东发布了新的文献求助10
2秒前
3秒前
慢慢完成签到,获得积分10
3秒前
大只鱼发布了新的文献求助10
4秒前
4秒前
bkagyin应助廿一采纳,获得30
4秒前
painx完成签到,获得积分10
4秒前
归尘发布了新的文献求助10
5秒前
安详凡发布了新的文献求助10
5秒前
zz完成签到,获得积分10
5秒前
Lee完成签到,获得积分10
6秒前
NexusExplorer应助沐阳d采纳,获得10
6秒前
天熙发布了新的文献求助10
6秒前
6秒前
疯帽子完成签到,获得积分10
6秒前
winwey发布了新的文献求助30
6秒前
6秒前
7秒前
王班长爱学习完成签到,获得积分10
7秒前
7秒前
yznfly应助shilong.yang采纳,获得40
8秒前
其奈公何完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
bbzzzha发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
陶醉的纲完成签到,获得积分10
10秒前
着急的向雁完成签到,获得积分10
10秒前
xxy应助nebula采纳,获得30
10秒前
阳光桐完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466271
求助须知:如何正确求助?哪些是违规求助? 4570197
关于积分的说明 14323735
捐赠科研通 4496698
什么是DOI,文献DOI怎么找? 2463500
邀请新用户注册赠送积分活动 1452381
关于科研通互助平台的介绍 1427516