ToxinPred 3.0: An improved method for predicting the toxicity of peptides

毒性 计算机科学 化学 有机化学
作者
Anand Singh Rathore,Shubham Choudhury,Akanksha Arora,P. A. Tijare,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:179: 108926-108926 被引量:4
标识
DOI:10.1016/j.compbiomed.2024.108926
摘要

Toxicity emerges as a prominent challenge in the design of therapeutic peptides, causing the failure of numerous peptides during clinical trials. In 2013, our group developed ToxinPred, a computational method that has been extensively adopted by the scientific community for predicting peptide toxicity. In this paper, we propose a refined variant of ToxinPred that showcases improved reliability and accuracy in predicting peptide toxicity. Initially, we utilized a similarity/alignment-based approach employing BLAST to predict toxic peptides, which yielded satisfactory accuracy; however, the method suffered from inadequate coverage. Subsequently, we employed a motif-based approach using MERCI software to uncover specific patterns or motifs that are exclusively observed in toxic peptides. The search for these motifs in peptides allowed us to predict toxic peptides with a high level of specificity with poor sensitivity. To overcome the coverage limitations, we developed alignment-free methods using machine/deep learning techniques to balance sensitivity and specificity of prediction. Deep learning model (ANN - LSTM with fixed sequence length) developed using one-hot encoding achieved a maximum AUROC of 0.93 with MCC of 0.71 on an independent dataset. Machine learning model (extra tree) developed using compositional features of peptides achieved a maximum AUROC of 0.95 with MCC of 0.78. We also developed large language models and achieved maximum AUC of 0.93 using ESM2-t33. Finally, we developed hybrid or ensemble methods combining two or more methods to enhance performance. Our specific hybrid method, which combines a motif-based approach with a machine learning-based model, achieved a maximum AUROC of 0.98 with MCC 0.81 on an independent dataset. In this study, all models were trained and tested on 80 % of data using five-fold cross-validation and evaluated on the remaining 20 % of data called independent dataset. The evaluation of all methods on an independent dataset revealed that the method proposed in this study exhibited better performance than existing methods. To cater to the needs of the scientific community, we have developed a standalone software, pip package and web-based server ToxinPred3 (https://github.com/raghavagps/toxinpred3 and https://webs.iiitd.edu.in/raghava/toxinpred3/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vikoel发布了新的文献求助10
3秒前
研友_VZG7GZ应助二丙采纳,获得10
3秒前
4秒前
xiao_niu完成签到,获得积分10
5秒前
可爱的函函应助vikoel采纳,获得10
10秒前
爱吃辣椒的蓉蓉完成签到,获得积分10
11秒前
鲜艳的沛春完成签到,获得积分10
11秒前
Antares完成签到,获得积分10
13秒前
14秒前
陈女士发布了新的文献求助10
19秒前
自觉的人雄完成签到 ,获得积分10
20秒前
NSS完成签到,获得积分10
20秒前
子车茗应助KKIII采纳,获得10
20秒前
马德里就思议完成签到,获得积分10
21秒前
22秒前
求文完成签到,获得积分10
23秒前
Foch完成签到,获得积分10
25秒前
eee7完成签到,获得积分10
27秒前
积极方盒完成签到,获得积分20
29秒前
李爱国应助清零采纳,获得10
30秒前
炙热谷雪完成签到 ,获得积分10
31秒前
Foch发布了新的文献求助10
31秒前
充电宝应助MOMO采纳,获得10
31秒前
李大姐发布了新的文献求助10
32秒前
无花果应助zhaozhao采纳,获得10
32秒前
积极方盒发布了新的文献求助20
33秒前
33秒前
墨染书香完成签到,获得积分10
34秒前
七月完成签到 ,获得积分10
34秒前
茕凡桃七完成签到,获得积分10
40秒前
40秒前
41秒前
小二郎应助专一的书雪采纳,获得10
43秒前
44秒前
44秒前
44秒前
MOMO完成签到,获得积分20
45秒前
充电宝应助zhaozhao采纳,获得10
45秒前
vikoel发布了新的文献求助10
47秒前
张杰列夫完成签到,获得积分10
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136141
求助须知:如何正确求助?哪些是违规求助? 2787040
关于积分的说明 7780388
捐赠科研通 2443192
什么是DOI,文献DOI怎么找? 1298921
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870