ToxinPred 3.0: An improved method for predicting the toxicity of peptides

毒性 人工智能 机器学习 深度学习 计算机科学 化学 有机化学
作者
Anand Singh Rathore,Shubham Choudhury,Akanksha Arora,P. A. Tijare,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:179: 108926-108926 被引量:130
标识
DOI:10.1016/j.compbiomed.2024.108926
摘要

Toxicity emerges as a prominent challenge in the design of therapeutic peptides, causing the failure of numerous peptides during clinical trials. In 2013, our group developed ToxinPred, a computational method that has been extensively adopted by the scientific community for predicting peptide toxicity. In this paper, we propose a refined variant of ToxinPred that showcases improved reliability and accuracy in predicting peptide toxicity. Initially, we utilized a similarity/alignment-based approach employing BLAST to predict toxic peptides, which yielded satisfactory accuracy; however, the method suffered from inadequate coverage. Subsequently, we employed a motif-based approach using MERCI software to uncover specific patterns or motifs that are exclusively observed in toxic peptides. The search for these motifs in peptides allowed us to predict toxic peptides with a high level of specificity with poor sensitivity. To overcome the coverage limitations, we developed alignment-free methods using machine/deep learning techniques to balance sensitivity and specificity of prediction. Deep learning model (ANN - LSTM with fixed sequence length) developed using one-hot encoding achieved a maximum AUROC of 0.93 with MCC of 0.71 on an independent dataset. Machine learning model (extra tree) developed using compositional features of peptides achieved a maximum AUROC of 0.95 with MCC of 0.78. We also developed large language models and achieved maximum AUC of 0.93 using ESM2-t33. Finally, we developed hybrid or ensemble methods combining two or more methods to enhance performance. Our specific hybrid method, which combines a motif-based approach with a machine learning-based model, achieved a maximum AUROC of 0.98 with MCC 0.81 on an independent dataset. In this study, all models were trained and tested on 80 % of data using five-fold cross-validation and evaluated on the remaining 20 % of data called independent dataset. The evaluation of all methods on an independent dataset revealed that the method proposed in this study exhibited better performance than existing methods. To cater to the needs of the scientific community, we have developed a standalone software, pip package and web-based server ToxinPred3 (https://github.com/raghavagps/toxinpred3 and https://webs.iiitd.edu.in/raghava/toxinpred3/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shenlan发布了新的文献求助30
刚刚
归海老四发布了新的文献求助10
刚刚
JeromineJade发布了新的文献求助10
1秒前
明亮西牛完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
Lim259发布了新的文献求助10
4秒前
4秒前
科研通AI6.1应助可爱丸子采纳,获得10
4秒前
4秒前
Orange应助激昂的钥匙采纳,获得10
5秒前
orixero应助nanonamo采纳,获得10
6秒前
6秒前
7秒前
balmy完成签到 ,获得积分10
7秒前
wanci应助等等采纳,获得10
7秒前
7秒前
粉蒸肉发布了新的文献求助30
7秒前
Criminology34应助cc采纳,获得10
8秒前
9秒前
11秒前
小王小王完成签到 ,获得积分10
11秒前
直菱完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
pbj发布了新的文献求助10
12秒前
12秒前
TiAmo完成签到,获得积分10
12秒前
13秒前
lxdfrank发布了新的文献求助10
13秒前
16秒前
balko发布了新的文献求助10
16秒前
卓卓完成签到,获得积分10
16秒前
沙心发布了新的文献求助10
17秒前
17秒前
咩咩发布了新的文献求助10
17秒前
17秒前
Adonis完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792