ToxinPred 3.0: An improved method for predicting the toxicity of peptides

毒性 人工智能 机器学习 深度学习 计算机科学 化学 有机化学
作者
Anand Singh Rathore,Shubham Choudhury,Akanksha Arora,P. A. Tijare,Gajendra P. S. Raghava
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:179: 108926-108926 被引量:48
标识
DOI:10.1016/j.compbiomed.2024.108926
摘要

Toxicity emerges as a prominent challenge in the design of therapeutic peptides, causing the failure of numerous peptides during clinical trials. In 2013, our group developed ToxinPred, a computational method that has been extensively adopted by the scientific community for predicting peptide toxicity. In this paper, we propose a refined variant of ToxinPred that showcases improved reliability and accuracy in predicting peptide toxicity. Initially, we utilized a similarity/alignment-based approach employing BLAST to predict toxic peptides, which yielded satisfactory accuracy; however, the method suffered from inadequate coverage. Subsequently, we employed a motif-based approach using MERCI software to uncover specific patterns or motifs that are exclusively observed in toxic peptides. The search for these motifs in peptides allowed us to predict toxic peptides with a high level of specificity with poor sensitivity. To overcome the coverage limitations, we developed alignment-free methods using machine/deep learning techniques to balance sensitivity and specificity of prediction. Deep learning model (ANN - LSTM with fixed sequence length) developed using one-hot encoding achieved a maximum AUROC of 0.93 with MCC of 0.71 on an independent dataset. Machine learning model (extra tree) developed using compositional features of peptides achieved a maximum AUROC of 0.95 with MCC of 0.78. We also developed large language models and achieved maximum AUC of 0.93 using ESM2-t33. Finally, we developed hybrid or ensemble methods combining two or more methods to enhance performance. Our specific hybrid method, which combines a motif-based approach with a machine learning-based model, achieved a maximum AUROC of 0.98 with MCC 0.81 on an independent dataset. In this study, all models were trained and tested on 80 % of data using five-fold cross-validation and evaluated on the remaining 20 % of data called independent dataset. The evaluation of all methods on an independent dataset revealed that the method proposed in this study exhibited better performance than existing methods. To cater to the needs of the scientific community, we have developed a standalone software, pip package and web-based server ToxinPred3 (https://github.com/raghavagps/toxinpred3 and https://webs.iiitd.edu.in/raghava/toxinpred3/).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助余甘木采纳,获得10
刚刚
风趣的胜应助王玉采纳,获得10
刚刚
刚刚
我是老大应助wwz采纳,获得10
刚刚
勤奋的琳完成签到,获得积分10
1秒前
Tomice发布了新的文献求助10
1秒前
ding应助能能鹤采纳,获得10
2秒前
enen发布了新的文献求助10
2秒前
周周发布了新的文献求助10
2秒前
所所应助听枫采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
香蕉觅云应助XUNGEER11采纳,获得10
3秒前
3秒前
扭扭车发布了新的文献求助10
3秒前
龙哥发布了新的文献求助10
4秒前
4秒前
洪亮完成签到,获得积分0
4秒前
5秒前
drfy123发布了新的文献求助10
5秒前
研友_VZG7GZ应助独特的苗条采纳,获得10
6秒前
6秒前
Little2发布了新的文献求助10
7秒前
盛夏之末应助太阳吖采纳,获得10
7秒前
星辰大海应助mrmrer采纳,获得10
7秒前
hhh完成签到,获得积分20
8秒前
逸鑫林完成签到 ,获得积分10
9秒前
大模型应助mirayq采纳,获得10
9秒前
9秒前
Ava应助21采纳,获得10
10秒前
10秒前
执着谷兰发布了新的文献求助30
10秒前
苻慕梅完成签到,获得积分10
11秒前
可爱的函函应助drfy123采纳,获得10
12秒前
leopardymk发布了新的文献求助10
12秒前
大气沧海发布了新的文献求助10
12秒前
Zhang完成签到,获得积分10
12秒前
12秒前
zhangpeipei完成签到,获得积分10
13秒前
shirly完成签到,获得积分10
13秒前
Cherish发布了新的文献求助10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961269
求助须知:如何正确求助?哪些是违规求助? 3507536
关于积分的说明 11136688
捐赠科研通 3239991
什么是DOI,文献DOI怎么找? 1790625
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803199