避障
强化学习
钢筋
障碍物
人工智能
计算机科学
机械臂
心理学
机器人
社会心理学
移动机器人
政治学
法学
作者
Peng Wu,Heng Su,Hao Dong,Tengfei Liu,Qiang Kang,Zhihao Chen
出处
期刊:Industrial Robot-an International Journal
[Emerald (MCB UP)]
日期:2024-07-16
标识
DOI:10.1108/ir-05-2024-0206
摘要
Purpose Robotic arms play a crucial role in various industrial operations, such as sorting, assembly, handling and spraying. However, traditional robotic arm control algorithms often struggle to adapt when faced with the challenge of dynamic obstacles. This paper aims to propose a dynamic obstacle avoidance method based on reinforcement learning to address real-time processing of dynamic obstacles. Design/methodology/approach This paper introduces an innovative method that introduces a feature extraction network that integrates gating mechanisms on the basis of traditional reinforcement learning algorithms. Additionally, an adaptive dynamic reward mechanism is designed to optimize the obstacle avoidance strategy. Findings Validation through the CoppeliaSim simulation environment and on-site testing has demonstrated the method's capability to effectively evade randomly moving obstacles, with a significant improvement in the convergence speed compared to traditional algorithms. Originality/value The proposed dynamic obstacle avoidance method based on Reinforcement Learning not only accomplishes the task of dynamic obstacle avoidance efficiently but also offers a distinct advantage in terms of convergence speed. This approach provides a novel solution to the obstacle avoidance methods for robotic arms.
科研通智能强力驱动
Strongly Powered by AbleSci AI