Damage identification of steel bridge based on data augmentation and adaptive optimization neural network

桥(图论) 人工神经网络 卷积神经网络 稳健性(进化) 计算机科学 粒子群优化 超参数 机器学习 模式识别(心理学) 数据挖掘 人工智能 医学 生物化学 基因 内科学 化学
作者
Minshui Huang,Jianwei Zhang,Jun Li,Z.C. Deng,Jin Luo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:33
标识
DOI:10.1177/14759217241255042
摘要

With the advancement of deep learning, data-driven structural damage identification (SDI) has shown considerable development. However, collecting vibration signals related to structural damage poses certain challenges, which can undermine the accuracy of the identification results produced by data-driven SDI methods in scenarios where data is scarce. This paper introduces an innovative approach to bridge SDI in a few-shot context by integrating an adaptive simulated annealing particle swarm optimization-convolutional neural network (ASAPSO-CNN) as the foundational framework, augmented by data enhancement techniques. Firstly, three specific types of noise are introduced to augment the source signals used for training. Subsequently, the source signals and augmented signals are recombined to construct a four-dimensional matrix as the input to the CNN, while defining the damage feature vector as the output. Secondly, a CNN is constructed to establish the mapping relationship between the input and output. Then, an adaptive fitness function is proposed that simultaneously considers the accuracy of SDI, model complexity, and training efficiency. The ASAPSO is employed to adaptively optimize the hyperparameters of the CNN. The proposed method is validated on an experimental model of a three-span continuous beam. It is compared with four other data-driven methods, demonstrating good effectiveness and robustness of SDI under cases of scarce data. Finally, the effectiveness of this SDI method is validated in a real-world case of a steel truss bridge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣海吃饭侠完成签到 ,获得积分10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
张北海应助科研通管家采纳,获得10
2秒前
坦率的匪应助科研通管家采纳,获得10
2秒前
思思发布了新的文献求助10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
坦率的匪应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得30
2秒前
天天快乐应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
疯狂的冬瓜完成签到,获得积分10
5秒前
ding应助波波采纳,获得10
5秒前
7秒前
研友_LX66qZ完成签到,获得积分10
8秒前
至幸完成签到,获得积分10
11秒前
么大人发布了新的文献求助10
11秒前
你好呀嘻嘻完成签到 ,获得积分10
11秒前
12秒前
至幸发布了新的文献求助10
14秒前
三颗星南极三完成签到 ,获得积分10
17秒前
华仔应助鲨鱼辣椒793采纳,获得10
21秒前
万能图书馆应助dej采纳,获得10
23秒前
汉堡包应助zombie采纳,获得10
25秒前
LYB1a吕完成签到,获得积分10
28秒前
天涯飞虎完成签到 ,获得积分10
28秒前
卷毛完成签到,获得积分10
28秒前
紧张的如南完成签到,获得积分10
28秒前
淡淡代玉发布了新的文献求助20
28秒前
29秒前
打打应助T拐拐采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975