Damage identification of steel bridge based on data augmentation and adaptive optimization neural network

桥(图论) 人工神经网络 卷积神经网络 稳健性(进化) 计算机科学 粒子群优化 超参数 机器学习 模式识别(心理学) 数据挖掘 人工智能 医学 生物化学 基因 内科学 化学
作者
Minshui Huang,Jianwei Zhang,Jun Li,Z.C. Deng,Jin Luo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (3): 1674-1699 被引量:53
标识
DOI:10.1177/14759217241255042
摘要

With the advancement of deep learning, data-driven structural damage identification (SDI) has shown considerable development. However, collecting vibration signals related to structural damage poses certain challenges, which can undermine the accuracy of the identification results produced by data-driven SDI methods in scenarios where data is scarce. This paper introduces an innovative approach to bridge SDI in a few-shot context by integrating an adaptive simulated annealing particle swarm optimization-convolutional neural network (ASAPSO-CNN) as the foundational framework, augmented by data enhancement techniques. Firstly, three specific types of noise are introduced to augment the source signals used for training. Subsequently, the source signals and augmented signals are recombined to construct a four-dimensional matrix as the input to the CNN, while defining the damage feature vector as the output. Secondly, a CNN is constructed to establish the mapping relationship between the input and output. Then, an adaptive fitness function is proposed that simultaneously considers the accuracy of SDI, model complexity, and training efficiency. The ASAPSO is employed to adaptively optimize the hyperparameters of the CNN. The proposed method is validated on an experimental model of a three-span continuous beam. It is compared with four other data-driven methods, demonstrating good effectiveness and robustness of SDI under cases of scarce data. Finally, the effectiveness of this SDI method is validated in a real-world case of a steel truss bridge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tina发布了新的文献求助10
刚刚
疯狂的洋葱关注了科研通微信公众号
刚刚
Honghao发布了新的文献求助10
刚刚
刚刚
1秒前
Heinrich完成签到,获得积分10
1秒前
卡皮巴拉yuan应助可靠问旋采纳,获得10
1秒前
xiaokaixin发布了新的文献求助10
2秒前
今后应助TTOM采纳,获得10
2秒前
科研小旺旺完成签到,获得积分10
2秒前
木棉发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助10
2秒前
科研王发布了新的文献求助10
3秒前
什么什么哇偶完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
kasami发布了新的文献求助10
5秒前
5秒前
深情安青应助GLM采纳,获得10
6秒前
6秒前
华仔应助魔幻安筠采纳,获得10
6秒前
bliss完成签到,获得积分10
6秒前
左丘易梦完成签到,获得积分10
7秒前
7秒前
tang应助虚心的岩采纳,获得10
7秒前
苔原猫咪甜甜圈完成签到,获得积分10
7秒前
尹善冰完成签到,获得积分10
7秒前
aaa完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
大圣来也发布了新的文献求助10
8秒前
在水一方应助11采纳,获得10
9秒前
9秒前
Wind应助愉快小猪采纳,获得10
10秒前
10086发布了新的文献求助10
10秒前
上官若男应助无心的月亮采纳,获得10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444