Damage identification of steel bridge based on data augmentation and adaptive optimization neural network

桥(图论) 人工神经网络 卷积神经网络 稳健性(进化) 计算机科学 粒子群优化 超参数 机器学习 模式识别(心理学) 数据挖掘 人工智能 医学 内科学 生物化学 化学 基因
作者
Minshui Huang,Jianwei Zhang,Jun Li,Z.C. Deng,Jin Luo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:41
标识
DOI:10.1177/14759217241255042
摘要

With the advancement of deep learning, data-driven structural damage identification (SDI) has shown considerable development. However, collecting vibration signals related to structural damage poses certain challenges, which can undermine the accuracy of the identification results produced by data-driven SDI methods in scenarios where data is scarce. This paper introduces an innovative approach to bridge SDI in a few-shot context by integrating an adaptive simulated annealing particle swarm optimization-convolutional neural network (ASAPSO-CNN) as the foundational framework, augmented by data enhancement techniques. Firstly, three specific types of noise are introduced to augment the source signals used for training. Subsequently, the source signals and augmented signals are recombined to construct a four-dimensional matrix as the input to the CNN, while defining the damage feature vector as the output. Secondly, a CNN is constructed to establish the mapping relationship between the input and output. Then, an adaptive fitness function is proposed that simultaneously considers the accuracy of SDI, model complexity, and training efficiency. The ASAPSO is employed to adaptively optimize the hyperparameters of the CNN. The proposed method is validated on an experimental model of a three-span continuous beam. It is compared with four other data-driven methods, demonstrating good effectiveness and robustness of SDI under cases of scarce data. Finally, the effectiveness of this SDI method is validated in a real-world case of a steel truss bridge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助司空元正采纳,获得10
刚刚
oldblack发布了新的文献求助50
2秒前
Ferry发布了新的文献求助10
3秒前
SCI硬通货发布了新的文献求助10
4秒前
共享精神应助w1x2123采纳,获得10
4秒前
茁长的树苗完成签到 ,获得积分10
4秒前
4秒前
可yi完成签到,获得积分10
5秒前
Yongander完成签到,获得积分10
5秒前
5秒前
小二郎应助忘尘采纳,获得10
5秒前
英俊的铭应助liuxian采纳,获得10
6秒前
Mxaxxxx发布了新的文献求助10
7秒前
8秒前
在水一方应助oleskarabach采纳,获得10
8秒前
10秒前
10秒前
cccf发布了新的文献求助10
11秒前
Zewen_Li应助研友_LJGOan采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
烤乳猪发布了新的文献求助10
13秒前
难过以晴发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
lmd250909完成签到,获得积分10
16秒前
16秒前
国家一级保护废物点心完成签到,获得积分10
17秒前
李健的粉丝团团长应助cccf采纳,获得100
18秒前
GUIGUI发布了新的文献求助10
18秒前
18秒前
忘尘发布了新的文献求助10
18秒前
Gnehsnuy完成签到 ,获得积分10
20秒前
20秒前
21秒前
21秒前
和谐项链发布了新的文献求助10
21秒前
紫熊发布了新的文献求助20
23秒前
土土完成签到,获得积分10
23秒前
优美芝发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408