Damage identification of steel bridge based on data augmentation and adaptive optimization neural network

桥(图论) 人工神经网络 卷积神经网络 稳健性(进化) 计算机科学 粒子群优化 超参数 机器学习 模式识别(心理学) 数据挖掘 人工智能 医学 生物化学 基因 内科学 化学
作者
Minshui Huang,Jianwei Zhang,Jun Li,Z.C. Deng,Jin Luo
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:24 (3): 1674-1699 被引量:53
标识
DOI:10.1177/14759217241255042
摘要

With the advancement of deep learning, data-driven structural damage identification (SDI) has shown considerable development. However, collecting vibration signals related to structural damage poses certain challenges, which can undermine the accuracy of the identification results produced by data-driven SDI methods in scenarios where data is scarce. This paper introduces an innovative approach to bridge SDI in a few-shot context by integrating an adaptive simulated annealing particle swarm optimization-convolutional neural network (ASAPSO-CNN) as the foundational framework, augmented by data enhancement techniques. Firstly, three specific types of noise are introduced to augment the source signals used for training. Subsequently, the source signals and augmented signals are recombined to construct a four-dimensional matrix as the input to the CNN, while defining the damage feature vector as the output. Secondly, a CNN is constructed to establish the mapping relationship between the input and output. Then, an adaptive fitness function is proposed that simultaneously considers the accuracy of SDI, model complexity, and training efficiency. The ASAPSO is employed to adaptively optimize the hyperparameters of the CNN. The proposed method is validated on an experimental model of a three-span continuous beam. It is compared with four other data-driven methods, demonstrating good effectiveness and robustness of SDI under cases of scarce data. Finally, the effectiveness of this SDI method is validated in a real-world case of a steel truss bridge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
大大发布了新的文献求助10
1秒前
BowieHuang应助zz采纳,获得10
1秒前
小七完成签到,获得积分20
1秒前
蓝天应助hechao101010采纳,获得10
1秒前
Criminology34应助镜中人采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
皮汶灵完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
宁静致远发布了新的文献求助10
3秒前
Owen应助小七采纳,获得20
4秒前
4秒前
yuyuyu完成签到,获得积分10
5秒前
rrrrrrry发布了新的文献求助10
7秒前
7秒前
夜枫发布了新的文献求助10
7秒前
桐桐应助cqz采纳,获得10
8秒前
yuyuyu发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
11秒前
李健的小迷弟应助yyy采纳,获得10
12秒前
13秒前
wyy完成签到 ,获得积分10
14秒前
哈哈哈哈发布了新的文献求助10
15秒前
李怼怼发布了新的文献求助10
15秒前
小陈发布了新的文献求助30
15秒前
15秒前
16秒前
16秒前
16秒前
18秒前
英姑应助说好不吃肥肉的采纳,获得10
19秒前
zylt50发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548