Poly(ethylene) Oxide Electrolytes for All-Solid-State Lithium Batteries Using Microsized Silicon/Carbon Anodes with Enhanced Rate Capability and Cyclability

材料科学 电解质 阳极 锂(药物) 法拉第效率 电极 化学工程 环氧乙烷 离子电导率 电化学 纳米技术 聚合物 复合材料 冶金 化学 医学 物理化学 共聚物 工程类 内分泌学
作者
Panpan Dong,Younghwan Cha,Xiahui Zhang,Julio Zamora,Min‐Kyu Song
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (31): 41018-41026
标识
DOI:10.1021/acsami.4c07879
摘要

Silicon (Si) has been widely studied as one of the promising anodes for lithium-ion batteries (LIBs) because of its ultrahigh theoretical specific capacity and low working voltage. However, the poor interfacial stability of silicon against conventional liquid electrolytes has largely impeded its practical use. Therefore, the combination of silicon-based anodes and solid electrolytes has attracted a great deal of attention in recent years. Here, we demonstrate three types of microsized porous silicon/carbon (Si/C) electrodes (i.e., pristine, prelithiated by liquid electrolyte, and preinfiltrated by polymer electrolyte) that are paired with poly(ethylene) oxide (PEO)-based electrolytes for all-solid-state lithium batteries (ASSLBs). We found that when compared with ionic conductivity, the mechanical stability of the PEO electrolyte dominates the electrochemical performance of ASSLBs using Si/C electrodes at elevated temperature. Additionally, both prelithiated and preinfiltrated Si/C electrodes show higher specific capacity in comparison to the pristine electrode, which is attributed to continuous lithium-ion conducting pathways within the electrode and thus improved utilization of active material. Moreover, owing to good interfacial lithium-ion transport in the electrode, a solid-state half-cell with preinfiltrated Si/C electrode and PEO-lithium bis (trifluoromethanesulfonyl)imide electrolyte delivers a specific capacity of ∼1,000 mAh g–1 after 100 cycles under 800 mA g–1 at 60 °C with average Coulombic efficiency >98.9%. This work provides a strategy for rationally designing the microstructure of silicon-based electrodes with solid electrolytes for high-performance all-solid-state lithium batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黎完成签到 ,获得积分10
1秒前
斯文败类应助66666采纳,获得10
1秒前
大模型应助wodetaiyangLLL采纳,获得10
2秒前
天生圣人发布了新的文献求助10
2秒前
南楼归雁发布了新的文献求助10
3秒前
Azhou完成签到,获得积分10
4秒前
飞云完成签到,获得积分10
4秒前
4秒前
5秒前
深情安青应助研友_8Y2M0L采纳,获得10
6秒前
上官若男应助zxh采纳,获得10
8秒前
8秒前
沉默清炎完成签到,获得积分10
9秒前
9秒前
科目三应助雾陆炜采纳,获得10
10秒前
小二郎应助天生圣人采纳,获得10
10秒前
11秒前
ooowindy发布了新的文献求助10
12秒前
14秒前
14秒前
14秒前
16秒前
zho发布了新的文献求助10
17秒前
YJ888发布了新的文献求助10
18秒前
明晨应助sxy0604采纳,获得10
19秒前
19秒前
JACk发布了新的文献求助10
19秒前
柏树发布了新的文献求助10
19秒前
20秒前
英俊的铭应助Crazy采纳,获得10
20秒前
科研通AI5应助南楼归雁采纳,获得10
20秒前
雾陆炜发布了新的文献求助10
25秒前
jouholly发布了新的文献求助10
25秒前
传奇3应助Cindy采纳,获得10
26秒前
桐桐应助柏树采纳,获得10
27秒前
一只小破孩完成签到,获得积分10
28秒前
28秒前
小h完成签到,获得积分10
30秒前
科研通AI5应助VVValentin采纳,获得10
32秒前
32秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479504
求助须知:如何正确求助?哪些是违规求助? 3070099
关于积分的说明 9116702
捐赠科研通 2761842
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700982
科研通“疑难数据库(出版商)”最低求助积分说明 699985