清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Self-Supervised Contrastive Learning on Attribute and Topology Graphs for Predicting Relationships Among lncRNAs, miRNAs and Diseases

计算机科学 人工智能 机器学习 监督学习 拓扑(电路) 计算生物学 理论计算机科学 数学 生物 组合数学 人工神经网络
作者
Lan Huang,Nan Sheng,Ling Gao,Lei Wang,Wenju Hou,Jie Hong,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/jbhi.2024.3467101
摘要

Exploring potential association between long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is an essential part of prevention, diagnosis and treatment of diseases. Since determining these relationships experimentally is resource-intensive and time-consuming, therefore computational methods have emerged as an attractive way to address this issue. However, existing computational approaches for inferring lncRNA-disease associations (LDA), miRNA-disease associations (MDA) and lncRNA-miRNA interactions (LMI) tend to focus on single task, neglecting the benefits of leveraging multiple biomolecular interactions and domain-specific knowledge for multi-task prediction. Furthermore, labeled data for LDA, MDA and LMI is scarce and costly in real-word applications, making it challenging for models to learn comprehensive node embedding patterns. Building on our previous work, this paper proposes a multi-task prediction model (called SSCLMD) that employs self-supervised contrastive learning on attribute and topology graphs to identify potential LDAs, MDAs and LMIs. Specifically, firstly, domain knowledge of lncRNAs, miRNAs and diseases as well as their interactions are exploited to construct attribute graph and topology graph, respectively. Then, the nodes are encoded in the attribute and topology spaces to extract the specific and common feature. Meanwhile, the attention mechanism is performed to adaptively fuse the embedding from different views. SSCLMD incorporates a contrastive self-supervised learning task as a regularize to guide the learning of node embeddings in both attribute and topology space without relying on labels. Severing as a regularize in multi-task learning paradigm, it to improves the model's generalization capabilities. Extensive experiments on 2 manually curated datasets demonstrate that SSCLMD significantly outperforms other baseline methods in LDA, MDA and LMI prediction tasks. Additionally, case studies on both new and old datasets further supported the ability of SSCLMD to uncover novel disease-related lncRNAs and miRNAs. The source codes and supplementary file of this work are publicly available on \url{https://github.com/sheng-n/SSCLMD}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oleskarabach发布了新的文献求助10
11秒前
蝎子莱莱xth完成签到,获得积分10
26秒前
氢锂钠钾铷铯钫完成签到,获得积分10
30秒前
ww完成签到,获得积分10
32秒前
Square完成签到,获得积分10
35秒前
稻子完成签到 ,获得积分10
37秒前
云木完成签到 ,获得积分10
37秒前
Jia发布了新的文献求助10
53秒前
喝酸奶不舔盖完成签到 ,获得积分10
54秒前
飞翔的企鹅完成签到,获得积分10
54秒前
oleskarabach完成签到,获得积分20
56秒前
oleskarabach发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
和谐的夏岚完成签到 ,获得积分10
1分钟前
1分钟前
摩诃萨完成签到,获得积分10
1分钟前
Jia完成签到,获得积分10
1分钟前
科研的豪哥完成签到 ,获得积分10
1分钟前
bo完成签到 ,获得积分10
1分钟前
妇产科医生完成签到 ,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
2分钟前
穿山的百足公主完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
sleet完成签到 ,获得积分10
3分钟前
3分钟前
511完成签到 ,获得积分10
3分钟前
活力的珊完成签到 ,获得积分10
3分钟前
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
chcmy完成签到 ,获得积分0
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
3分钟前
木子李完成签到 ,获得积分10
3分钟前
3分钟前
neufy发布了新的文献求助10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015435
求助须知:如何正确求助?哪些是违规求助? 3555358
关于积分的说明 11318024
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812012