Self-Supervised Contrastive Learning on Attribute and Topology Graphs for Predicting Relationships Among lncRNAs, miRNAs and Diseases

计算机科学 人工智能 机器学习 监督学习 拓扑(电路) 计算生物学 理论计算机科学 数学 生物 组合数学 人工神经网络
作者
Lan Huang,Nan Sheng,Ling Gao,Li Wang,Wenju Hou,Jie Hong,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/jbhi.2024.3467101
摘要

Exploring potential association between long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is an essential part of prevention, diagnosis and treatment of diseases. Since determining these relationships experimentally is resource-intensive and time-consuming, therefore computational methods have emerged as an attractive way to address this issue. However, existing computational approaches for inferring lncRNA-disease associations (LDA), miRNA-disease associations (MDA) and lncRNA-miRNA interactions (LMI) tend to focus on single task, neglecting the benefits of leveraging multiple biomolecular interactions and domain-specific knowledge for multi-task prediction. Furthermore, labeled data for LDA, MDA and LMI is scarce and costly in real-word applications, making it challenging for models to learn comprehensive node embedding patterns. Building on our previous work, this paper proposes a multi-task prediction model (called SSCLMD) that employs self-supervised contrastive learning on attribute and topology graphs to identify potential LDAs, MDAs and LMIs. Specifically, firstly, domain knowledge of lncRNAs, miRNAs and diseases as well as their interactions are exploited to construct attribute graph and topology graph, respectively. Then, the nodes are encoded in the attribute and topology spaces to extract the specific and common feature. Meanwhile, the attention mechanism is performed to adaptively fuse the embedding from different views. SSCLMD incorporates a contrastive self-supervised learning task as a regularize to guide the learning of node embeddings in both attribute and topology space without relying on labels. Severing as a regularize in multi-task learning paradigm, it to improves the model's generalization capabilities. Extensive experiments on 2 manually curated datasets demonstrate that SSCLMD significantly outperforms other baseline methods in LDA, MDA and LMI prediction tasks. Additionally, case studies on both new and old datasets further supported the ability of SSCLMD to uncover novel disease-related lncRNAs and miRNAs. The source codes and supplementary file of this work are publicly available on \url{https://github.com/sheng-n/SSCLMD}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
min17发布了新的文献求助10
1秒前
虚幻赛凤发布了新的文献求助10
1秒前
李爱国应助谨慎垣采纳,获得10
4秒前
斯文败类应助乐小泽采纳,获得10
4秒前
wwc完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
min17完成签到,获得积分10
12秒前
SDSD完成签到,获得积分10
13秒前
13秒前
Ava应助自由香魔采纳,获得10
13秒前
舒心的逍遥完成签到 ,获得积分10
13秒前
虚幻赛凤完成签到,获得积分10
13秒前
巴啦啦小魔仙完成签到,获得积分10
14秒前
nenoaowu发布了新的文献求助100
16秒前
jk完成签到,获得积分10
16秒前
SDSD发布了新的文献求助10
16秒前
17秒前
自由幻儿发布了新的文献求助10
17秒前
DBY完成签到,获得积分10
17秒前
18秒前
shdhdu发布了新的文献求助10
21秒前
jonghuang发布了新的文献求助10
21秒前
不想读书完成签到,获得积分10
21秒前
wwww发布了新的文献求助20
23秒前
27秒前
27秒前
丰富的毛巾完成签到,获得积分10
27秒前
科研通AI2S应助加油采纳,获得10
27秒前
小威完成签到,获得积分10
29秒前
居易何难完成签到,获得积分20
29秒前
31秒前
Akim应助勤恳丹寒采纳,获得10
31秒前
不想读书发布了新的文献求助10
32秒前
居易何难发布了新的文献求助10
32秒前
33秒前
Rita发布了新的文献求助30
33秒前
爆米花应助几米杨采纳,获得10
33秒前
34秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542