亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-Supervised Contrastive Learning on Attribute and Topology Graphs for Predicting Relationships Among lncRNAs, miRNAs and Diseases

计算机科学 人工智能 机器学习 监督学习 拓扑(电路) 计算生物学 理论计算机科学 数学 生物 组合数学 人工神经网络
作者
Lan Huang,Nan Sheng,Ling Gao,Lei Wang,Wenju Hou,Jie Hong,Yan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:6
标识
DOI:10.1109/jbhi.2024.3467101
摘要

Exploring potential association between long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and diseases is an essential part of prevention, diagnosis and treatment of diseases. Since determining these relationships experimentally is resource-intensive and time-consuming, therefore computational methods have emerged as an attractive way to address this issue. However, existing computational approaches for inferring lncRNA-disease associations (LDA), miRNA-disease associations (MDA) and lncRNA-miRNA interactions (LMI) tend to focus on single task, neglecting the benefits of leveraging multiple biomolecular interactions and domain-specific knowledge for multi-task prediction. Furthermore, labeled data for LDA, MDA and LMI is scarce and costly in real-word applications, making it challenging for models to learn comprehensive node embedding patterns. Building on our previous work, this paper proposes a multi-task prediction model (called SSCLMD) that employs self-supervised contrastive learning on attribute and topology graphs to identify potential LDAs, MDAs and LMIs. Specifically, firstly, domain knowledge of lncRNAs, miRNAs and diseases as well as their interactions are exploited to construct attribute graph and topology graph, respectively. Then, the nodes are encoded in the attribute and topology spaces to extract the specific and common feature. Meanwhile, the attention mechanism is performed to adaptively fuse the embedding from different views. SSCLMD incorporates a contrastive self-supervised learning task as a regularize to guide the learning of node embeddings in both attribute and topology space without relying on labels. Severing as a regularize in multi-task learning paradigm, it to improves the model's generalization capabilities. Extensive experiments on 2 manually curated datasets demonstrate that SSCLMD significantly outperforms other baseline methods in LDA, MDA and LMI prediction tasks. Additionally, case studies on both new and old datasets further supported the ability of SSCLMD to uncover novel disease-related lncRNAs and miRNAs. The source codes and supplementary file of this work are publicly available on \url{https://github.com/sheng-n/SSCLMD}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
沉醉的中国钵完成签到,获得积分10
6秒前
加菲丰丰应助科研通管家采纳,获得10
8秒前
量子星尘发布了新的文献求助100
12秒前
13秒前
米糊发布了新的文献求助10
20秒前
22秒前
22秒前
Kevin发布了新的文献求助10
26秒前
27秒前
42秒前
59秒前
1分钟前
1分钟前
1分钟前
黑摄会阿Fay完成签到,获得积分10
2分钟前
2分钟前
飘逸的思烟完成签到,获得积分10
2分钟前
魔法师完成签到,获得积分0
3分钟前
彭于晏应助1920采纳,获得10
4分钟前
Migue发布了新的文献求助10
4分钟前
4分钟前
1920发布了新的文献求助10
4分钟前
4分钟前
5分钟前
林子博发布了新的文献求助10
5分钟前
5分钟前
CodeCraft应助科研通管家采纳,获得10
6分钟前
6分钟前
幽默赛君完成签到 ,获得积分10
6分钟前
Frog完成签到 ,获得积分10
6分钟前
al完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助50
7分钟前
科研小小白完成签到,获得积分20
7分钟前
7分钟前
7分钟前
7分钟前
7分钟前
馆长举报11111求助涉嫌违规
8分钟前
GPTea应助科研通管家采纳,获得20
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889285
求助须知:如何正确求助?哪些是违规求助? 4173381
关于积分的说明 12951956
捐赠科研通 3934793
什么是DOI,文献DOI怎么找? 2159010
邀请新用户注册赠送积分活动 1177289
关于科研通互助平台的介绍 1082141