TCNN-KAN: Optimized CNN by Kolmogorov-Arnold Network and Pruning Techniques for sEMG Gesture Recognition

计算机科学 修剪 模式识别(心理学) 人工智能 手势识别 手势 语音识别 生物 农学
作者
Mohammed A. A. Al‐qaness,Sike Ni
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3467065
摘要

Surface electromyography (sEMG) is a non-invasive technique that records the electrical signals generated by muscle activity. sEMG signals are widely used in the field of biomedical and health informatics for diagnosing and monitoring neuromuscular disorders, as well as in fields such as motor control, rehabilitation, and human-computer interaction. In this paper, we propose a novel model called the Triple Convolutional Neural Network and Kolmogorov-Arnold Network (TCNN-KAN) for recognizing gesture signals based on sEMG. Our approach replaces the commonly used fully connected layer with the KAN, parameterizing it as a spline function to improve classification accuracy. Specifically, when using a KAN instead, generate the TCNN-KAN-1 model. When using two KAN layers, generate the TCNN-KAN-2 model and generate the TCNN-KAN-3 model when KAN replaces all fully connected layers. Firstly, to ensure the model learns universal features, we fuse gesture signals from different individuals and segment them to create uniform window sizes. Then, the processed signal is input into the basic convolution layer of different depths for training. In order to improve the accuracy, we convert the standard fully connected layer in the convolutional layer to the KAN layer so that it has a learnable activation function in weight. Finally, we introduce unstructured pruning to reduce computational complexity and minimize overfitting by removing channels with lower feature importance. We use three datasets, NinaPro DB1, NinaPro DB5, and CSL, for evaluation. The results show that on the TCNN-KAN-2 model, each dataset has achieved the highest accuracy. Specifically, when the pruning rates were 0.2, 0.1, and 0.4, the accuracy rates reached 98.38%, 93.81%, and 75.56%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jay完成签到,获得积分10
1秒前
biuesky完成签到,获得积分10
2秒前
3秒前
狂野电源发布了新的文献求助10
4秒前
4秒前
4秒前
Caer完成签到 ,获得积分10
6秒前
6秒前
7秒前
cc完成签到 ,获得积分10
8秒前
yyt发布了新的文献求助10
9秒前
四下看发布了新的文献求助10
9秒前
JamesPei应助不样钓鱼采纳,获得10
9秒前
NexusExplorer应助一一采纳,获得10
9秒前
科研通AI2S应助gggghhhh采纳,获得10
10秒前
Hailey发布了新的文献求助10
12秒前
大个应助DX120210165采纳,获得10
13秒前
Owen应助zzz采纳,获得10
14秒前
15秒前
友之的星星完成签到,获得积分10
15秒前
15秒前
CipherSage应助江湖笑采纳,获得10
15秒前
yyt完成签到,获得积分10
15秒前
Frieren完成签到 ,获得积分10
16秒前
彭于晏应助小晶豆采纳,获得10
17秒前
17秒前
Lin完成签到,获得积分10
18秒前
黄多多发布了新的文献求助10
19秒前
霸气冷梅完成签到,获得积分10
20秒前
yj发布了新的文献求助10
20秒前
四下看完成签到,获得积分10
20秒前
李理发布了新的文献求助10
21秒前
yyy完成签到,获得积分10
23秒前
一一发布了新的文献求助10
23秒前
23秒前
23秒前
赘婿应助Yingkun_Xu采纳,获得10
24秒前
24秒前
hahaha完成签到 ,获得积分10
27秒前
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260