TCNN-KAN: Optimized CNN by Kolmogorov-Arnold Network and Pruning Techniques for sEMG Gesture Recognition

计算机科学 修剪 模式识别(心理学) 人工智能 手势识别 手势 语音识别 生物 农学
作者
Mohammed A. A. Al‐qaness,Sike Ni
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:3
标识
DOI:10.1109/jbhi.2024.3467065
摘要

Surface electromyography (sEMG) is a non-invasive technique that records the electrical signals generated by muscle activity. sEMG signals are widely used in the field of biomedical and health informatics for diagnosing and monitoring neuromuscular disorders, as well as in fields such as motor control, rehabilitation, and human-computer interaction. In this paper, we propose a novel model called the Triple Convolutional Neural Network and Kolmogorov-Arnold Network (TCNN-KAN) for recognizing gesture signals based on sEMG. Our approach replaces the commonly used fully connected layer with the KAN, parameterizing it as a spline function to improve classification accuracy. Specifically, when using a KAN instead, generate the TCNN-KAN-1 model. When using two KAN layers, generate the TCNN-KAN-2 model and generate the TCNN-KAN-3 model when KAN replaces all fully connected layers. Firstly, to ensure the model learns universal features, we fuse gesture signals from different individuals and segment them to create uniform window sizes. Then, the processed signal is input into the basic convolution layer of different depths for training. In order to improve the accuracy, we convert the standard fully connected layer in the convolutional layer to the KAN layer so that it has a learnable activation function in weight. Finally, we introduce unstructured pruning to reduce computational complexity and minimize overfitting by removing channels with lower feature importance. We use three datasets, NinaPro DB1, NinaPro DB5, and CSL, for evaluation. The results show that on the TCNN-KAN-2 model, each dataset has achieved the highest accuracy. Specifically, when the pruning rates were 0.2, 0.1, and 0.4, the accuracy rates reached 98.38%, 93.81%, and 75.56%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
萌萌雨完成签到,获得积分10
1秒前
CY发布了新的文献求助10
1秒前
2秒前
3秒前
zxy完成签到,获得积分10
3秒前
皮皮完成签到,获得积分10
3秒前
白色花海完成签到,获得积分10
4秒前
Hello应助JoshuaChen采纳,获得10
4秒前
小鱼鱼Fish完成签到,获得积分10
4秒前
YZJing完成签到,获得积分10
4秒前
5秒前
语青完成签到,获得积分10
5秒前
5秒前
优雅的芷巧完成签到,获得积分10
6秒前
N型半导体完成签到,获得积分10
6秒前
6秒前
张础锐发布了新的文献求助10
6秒前
Ava应助Pacer采纳,获得10
7秒前
沉默的孤风完成签到,获得积分10
7秒前
喻嘟嘟完成签到,获得积分20
7秒前
8秒前
8秒前
5552222完成签到,获得积分10
8秒前
gelinhao完成签到,获得积分10
9秒前
鹤扰完成签到,获得积分10
10秒前
WW发布了新的文献求助10
10秒前
受伤听露完成签到,获得积分10
10秒前
科目三应助青柠大大采纳,获得10
11秒前
MQQ完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
BLUICE发布了新的文献求助30
12秒前
iNk应助好学的猪采纳,获得10
12秒前
mark707完成签到,获得积分20
12秒前
如意雅山发布了新的文献求助10
12秒前
msk完成签到 ,获得积分10
13秒前
13秒前
13秒前
爆米花应助健忘的无色采纳,获得10
13秒前
萝卜卷心菜完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582