亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IDDF2024-ABS-0124 Cutting-edge deep learning models with domain adaptation outperform traditional methods in predicting liver-related complications in metabolic dysfunction-associated steatotic liver disease

医学 队列 肝硬化 接收机工作特性 脂肪肝 内科学 肝病 失代偿 疾病
作者
Terry Cheuk‐Fung Yip,Jingwen Xu,Mandy Sze‐Man Lai,Sherlot Juan Song,Yee‐Kit Tse,Henry Lik-Yuen Chan,Grace Lai‐Hung Wong,Pong C. Yuen,Vincent Wai‐Sun Wong
标识
DOI:10.1136/gutjnl-2024-iddf.174
摘要

Background

To develop innovative risk models for predicting liver-related events including hepatic decompensation and hepatocellular carcinoma in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).

Methods

The training cohort included adult patients with MASLD from a territory-wide database in Hong Kong between January 2000 and July 2021. Five modern domain adaptation (DA) methods on fully connected neural networks were evaluated using the area under the time-dependent receiver operating characteristic curves (AUROCs) and compared with the FIB-4 index, NAFLD outcomes score (NOS), and a Fine-Gray model. The validation cohort comprised adult patients with type 2 diabetes (T2D) and probable MASLD, identified using previously developed NAFLD ridge score. We excluded patients with liver-related events before MASLD diagnosis or follow-up <6 months. This study was supported by the Health and Medical Research Fund (Reference number: 19202141).

Results

Among 25,166 patients with MASLD in the training cohort (mean age 56.9 years, 54.3% females, 0.7% cirrhosis), 272 (1.1%) developed liver-related events during 133,816 person-years (PYs). During 4,386,544 PYs among 411,395 patients in the validation cohort (mean age 61.8 years, 49.3% females, 0.4% cirrhosis), 5,984 (1.5%) developed liver-related events. Among the five DA methods, maximum classifier discrepancy (MCD) (AUROC [95% CI] 0.822 [0.814-0.829]) and confidence regularised self-training (CRST) (0.825 [0.817-0.832]) performed best in validation (IDDF2024-ABS-0124 Figure 1). The AUROC of the Fine-Gray model decreased from 0.804 in training to 0.681 in validation, demonstrating the advantage of DA in preserving model accuracy in a less definite MASLD population. Similarly, the AUROC of NOS and FIB-4 dropped to 0.649 and 0.645 in validation. Among the 19 factors, including common laboratory tests, comorbidities, and demographics in MCD and CRST, the eight leading factors were cirrhosis, diabetes, platelets, aspartate aminotransferase, gamma-glutamyl transferase, international normalised ratio, dyslipidaemia, and albumin. MCD labelled 78.6% of patients with T2D and MASLD as low risk, achieving a 99.2% negative predictive value for excluding liver-related events in 15 years.

Conclusions

Our novel models, integrating common clinical parameters, effectively identify low-risk individuals for liver-related events among patients with MASLD and patients with T2D and probable MASLD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳青梦发布了新的文献求助10
1秒前
Pengfei_Soil发布了新的文献求助10
4秒前
5秒前
11秒前
13秒前
yyds完成签到,获得积分0
14秒前
17秒前
嘻嘻嘻完成签到,获得积分10
17秒前
20秒前
21秒前
2jz发布了新的文献求助10
25秒前
maopf发布了新的文献求助10
30秒前
小蘑菇应助结实的凉面采纳,获得10
32秒前
32秒前
qianyixingchen完成签到 ,获得积分10
36秒前
SciGPT应助沉默的倔驴采纳,获得10
37秒前
迅速初柳发布了新的文献求助10
38秒前
maopf完成签到,获得积分10
42秒前
c7发布了新的文献求助10
43秒前
英俊的铭应助迅速初柳采纳,获得10
46秒前
47秒前
西蓝花战士完成签到 ,获得积分10
51秒前
52秒前
炙热成仁发布了新的文献求助10
53秒前
NI完成签到 ,获得积分10
59秒前
1分钟前
赘婿应助悦耳青梦采纳,获得10
1分钟前
科研通AI6.1应助我不吃葱采纳,获得10
1分钟前
科研通AI6.1应助小年小少采纳,获得20
1分钟前
炙热成仁完成签到,获得积分10
1分钟前
希希完成签到 ,获得积分10
1分钟前
Joy关注了科研通微信公众号
1分钟前
Hello应助沉默的倔驴采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510