IDDF2024-ABS-0124 Cutting-edge deep learning models with domain adaptation outperform traditional methods in predicting liver-related complications in metabolic dysfunction-associated steatotic liver disease

医学 队列 肝硬化 接收机工作特性 脂肪肝 内科学 肝病 失代偿 疾病
作者
Terry Cheuk‐Fung Yip,Jingwen Xu,Mandy Sze‐Man Lai,Sherlot Juan Song,Yee‐Kit Tse,Henry Lik-Yuen Chan,Grace Lai‐Hung Wong,Pong C. Yuen,Vincent Wai‐Sun Wong
标识
DOI:10.1136/gutjnl-2024-iddf.174
摘要

Background

To develop innovative risk models for predicting liver-related events including hepatic decompensation and hepatocellular carcinoma in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).

Methods

The training cohort included adult patients with MASLD from a territory-wide database in Hong Kong between January 2000 and July 2021. Five modern domain adaptation (DA) methods on fully connected neural networks were evaluated using the area under the time-dependent receiver operating characteristic curves (AUROCs) and compared with the FIB-4 index, NAFLD outcomes score (NOS), and a Fine-Gray model. The validation cohort comprised adult patients with type 2 diabetes (T2D) and probable MASLD, identified using previously developed NAFLD ridge score. We excluded patients with liver-related events before MASLD diagnosis or follow-up <6 months. This study was supported by the Health and Medical Research Fund (Reference number: 19202141).

Results

Among 25,166 patients with MASLD in the training cohort (mean age 56.9 years, 54.3% females, 0.7% cirrhosis), 272 (1.1%) developed liver-related events during 133,816 person-years (PYs). During 4,386,544 PYs among 411,395 patients in the validation cohort (mean age 61.8 years, 49.3% females, 0.4% cirrhosis), 5,984 (1.5%) developed liver-related events. Among the five DA methods, maximum classifier discrepancy (MCD) (AUROC [95% CI] 0.822 [0.814-0.829]) and confidence regularised self-training (CRST) (0.825 [0.817-0.832]) performed best in validation (IDDF2024-ABS-0124 Figure 1). The AUROC of the Fine-Gray model decreased from 0.804 in training to 0.681 in validation, demonstrating the advantage of DA in preserving model accuracy in a less definite MASLD population. Similarly, the AUROC of NOS and FIB-4 dropped to 0.649 and 0.645 in validation. Among the 19 factors, including common laboratory tests, comorbidities, and demographics in MCD and CRST, the eight leading factors were cirrhosis, diabetes, platelets, aspartate aminotransferase, gamma-glutamyl transferase, international normalised ratio, dyslipidaemia, and albumin. MCD labelled 78.6% of patients with T2D and MASLD as low risk, achieving a 99.2% negative predictive value for excluding liver-related events in 15 years.

Conclusions

Our novel models, integrating common clinical parameters, effectively identify low-risk individuals for liver-related events among patients with MASLD and patients with T2D and probable MASLD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JianminLuo发布了新的文献求助10
刚刚
刚刚
下文献的蜉蝣完成签到 ,获得积分10
刚刚
1秒前
满意尔安完成签到,获得积分10
4秒前
顾钦发布了新的文献求助10
5秒前
学术大白完成签到 ,获得积分10
8秒前
momo完成签到 ,获得积分10
8秒前
科研小白完成签到,获得积分10
9秒前
超级八宝粥完成签到,获得积分10
9秒前
10秒前
charlins完成签到,获得积分10
11秒前
xwhhxxb关注了科研通微信公众号
13秒前
14秒前
ding应助Lianna采纳,获得20
15秒前
15秒前
毕竟是淳淳桑啊完成签到,获得积分10
17秒前
ZJK发布了新的文献求助10
17秒前
聪聪发布了新的文献求助150
18秒前
经冰夏完成签到 ,获得积分10
19秒前
19秒前
20秒前
锅锅完成签到,获得积分10
21秒前
23秒前
陈一晨发布了新的文献求助10
25秒前
李健应助度容采纳,获得10
25秒前
water完成签到,获得积分20
25秒前
大帅比发布了新的文献求助10
26秒前
思源应助温柔大猩猩采纳,获得10
27秒前
FartKing发布了新的文献求助30
27秒前
azr应助ZJK采纳,获得10
28秒前
30秒前
害怕的小懒虫完成签到,获得积分10
30秒前
研友_pnxBe8发布了新的文献求助10
30秒前
Lianna发布了新的文献求助20
31秒前
wmm发布了新的文献求助10
31秒前
mm发布了新的文献求助10
32秒前
32秒前
33秒前
烟花应助毕竟是淳淳桑啊采纳,获得100
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312284
求助须知:如何正确求助?哪些是违规求助? 2944917
关于积分的说明 8522096
捐赠科研通 2620692
什么是DOI,文献DOI怎么找? 1432995
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650147