IDDF2024-ABS-0124 Cutting-edge deep learning models with domain adaptation outperform traditional methods in predicting liver-related complications in metabolic dysfunction-associated steatotic liver disease

医学 队列 肝硬化 接收机工作特性 脂肪肝 内科学 肝病 失代偿 疾病
作者
Terry Cheuk‐Fung Yip,Jingwen Xu,Mandy Sze‐Man Lai,Sherlot Juan Song,Yee‐Kit Tse,Henry Lik-Yuen Chan,Grace Lai‐Hung Wong,Pong C. Yuen,Vincent Wai‐Sun Wong
标识
DOI:10.1136/gutjnl-2024-iddf.174
摘要

Background

To develop innovative risk models for predicting liver-related events including hepatic decompensation and hepatocellular carcinoma in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).

Methods

The training cohort included adult patients with MASLD from a territory-wide database in Hong Kong between January 2000 and July 2021. Five modern domain adaptation (DA) methods on fully connected neural networks were evaluated using the area under the time-dependent receiver operating characteristic curves (AUROCs) and compared with the FIB-4 index, NAFLD outcomes score (NOS), and a Fine-Gray model. The validation cohort comprised adult patients with type 2 diabetes (T2D) and probable MASLD, identified using previously developed NAFLD ridge score. We excluded patients with liver-related events before MASLD diagnosis or follow-up <6 months. This study was supported by the Health and Medical Research Fund (Reference number: 19202141).

Results

Among 25,166 patients with MASLD in the training cohort (mean age 56.9 years, 54.3% females, 0.7% cirrhosis), 272 (1.1%) developed liver-related events during 133,816 person-years (PYs). During 4,386,544 PYs among 411,395 patients in the validation cohort (mean age 61.8 years, 49.3% females, 0.4% cirrhosis), 5,984 (1.5%) developed liver-related events. Among the five DA methods, maximum classifier discrepancy (MCD) (AUROC [95% CI] 0.822 [0.814-0.829]) and confidence regularised self-training (CRST) (0.825 [0.817-0.832]) performed best in validation (IDDF2024-ABS-0124 Figure 1). The AUROC of the Fine-Gray model decreased from 0.804 in training to 0.681 in validation, demonstrating the advantage of DA in preserving model accuracy in a less definite MASLD population. Similarly, the AUROC of NOS and FIB-4 dropped to 0.649 and 0.645 in validation. Among the 19 factors, including common laboratory tests, comorbidities, and demographics in MCD and CRST, the eight leading factors were cirrhosis, diabetes, platelets, aspartate aminotransferase, gamma-glutamyl transferase, international normalised ratio, dyslipidaemia, and albumin. MCD labelled 78.6% of patients with T2D and MASLD as low risk, achieving a 99.2% negative predictive value for excluding liver-related events in 15 years.

Conclusions

Our novel models, integrating common clinical parameters, effectively identify low-risk individuals for liver-related events among patients with MASLD and patients with T2D and probable MASLD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
drughunter009完成签到 ,获得积分10
刚刚
bkagyin应助曾经问雁采纳,获得10
1秒前
cathyliu完成签到,获得积分10
1秒前
好运连连完成签到 ,获得积分10
2秒前
美好斓发布了新的文献求助10
3秒前
飞飞完成签到,获得积分10
3秒前
4秒前
勤恳镜子完成签到,获得积分10
4秒前
梁子完成签到,获得积分10
4秒前
圣人海完成签到,获得积分10
6秒前
小刀yeye完成签到,获得积分10
6秒前
8秒前
HZYT完成签到,获得积分10
9秒前
zy完成签到,获得积分10
9秒前
张一完成签到,获得积分10
10秒前
俊逸的问薇完成签到 ,获得积分10
11秒前
Jason完成签到,获得积分10
12秒前
12秒前
gcl完成签到 ,获得积分10
13秒前
段志豪完成签到,获得积分10
13秒前
曾经问雁发布了新的文献求助10
13秒前
一一一多完成签到 ,获得积分0
14秒前
量子星尘发布了新的文献求助30
14秒前
量子星尘发布了新的文献求助10
14秒前
小巧的寻双完成签到,获得积分10
15秒前
Rrrr_完成签到,获得积分10
16秒前
张先生发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
耿耿于怀完成签到,获得积分10
17秒前
17秒前
ll完成签到,获得积分10
18秒前
烟花应助LL采纳,获得10
18秒前
倾听阳光完成签到 ,获得积分10
19秒前
online1881发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789679
求助须知:如何正确求助?哪些是违规求助? 5722110
关于积分的说明 15475187
捐赠科研通 4917424
什么是DOI,文献DOI怎么找? 2647009
邀请新用户注册赠送积分活动 1594642
关于科研通互助平台的介绍 1549131