亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IDDF2024-ABS-0124 Cutting-edge deep learning models with domain adaptation outperform traditional methods in predicting liver-related complications in metabolic dysfunction-associated steatotic liver disease

医学 队列 肝硬化 接收机工作特性 脂肪肝 内科学 肝病 失代偿 疾病
作者
Terry Cheuk‐Fung Yip,Jingwen Xu,Mandy Sze‐Man Lai,Sherlot Juan Song,Yee‐Kit Tse,Henry Lik-Yuen Chan,Grace Lai‐Hung Wong,Pong C. Yuen,Vincent Wai‐Sun Wong
标识
DOI:10.1136/gutjnl-2024-iddf.174
摘要

Background

To develop innovative risk models for predicting liver-related events including hepatic decompensation and hepatocellular carcinoma in patients with metabolic dysfunction-associated steatotic liver disease (MASLD).

Methods

The training cohort included adult patients with MASLD from a territory-wide database in Hong Kong between January 2000 and July 2021. Five modern domain adaptation (DA) methods on fully connected neural networks were evaluated using the area under the time-dependent receiver operating characteristic curves (AUROCs) and compared with the FIB-4 index, NAFLD outcomes score (NOS), and a Fine-Gray model. The validation cohort comprised adult patients with type 2 diabetes (T2D) and probable MASLD, identified using previously developed NAFLD ridge score. We excluded patients with liver-related events before MASLD diagnosis or follow-up <6 months. This study was supported by the Health and Medical Research Fund (Reference number: 19202141).

Results

Among 25,166 patients with MASLD in the training cohort (mean age 56.9 years, 54.3% females, 0.7% cirrhosis), 272 (1.1%) developed liver-related events during 133,816 person-years (PYs). During 4,386,544 PYs among 411,395 patients in the validation cohort (mean age 61.8 years, 49.3% females, 0.4% cirrhosis), 5,984 (1.5%) developed liver-related events. Among the five DA methods, maximum classifier discrepancy (MCD) (AUROC [95% CI] 0.822 [0.814-0.829]) and confidence regularised self-training (CRST) (0.825 [0.817-0.832]) performed best in validation (IDDF2024-ABS-0124 Figure 1). The AUROC of the Fine-Gray model decreased from 0.804 in training to 0.681 in validation, demonstrating the advantage of DA in preserving model accuracy in a less definite MASLD population. Similarly, the AUROC of NOS and FIB-4 dropped to 0.649 and 0.645 in validation. Among the 19 factors, including common laboratory tests, comorbidities, and demographics in MCD and CRST, the eight leading factors were cirrhosis, diabetes, platelets, aspartate aminotransferase, gamma-glutamyl transferase, international normalised ratio, dyslipidaemia, and albumin. MCD labelled 78.6% of patients with T2D and MASLD as low risk, achieving a 99.2% negative predictive value for excluding liver-related events in 15 years.

Conclusions

Our novel models, integrating common clinical parameters, effectively identify low-risk individuals for liver-related events among patients with MASLD and patients with T2D and probable MASLD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dynamoo发布了新的文献求助10
1秒前
6秒前
Ni发布了新的文献求助10
6秒前
7秒前
静_完成签到 ,获得积分10
10秒前
10秒前
木林山水发布了新的文献求助10
13秒前
医探完成签到,获得积分10
13秒前
左左曦完成签到,获得积分10
14秒前
修辛完成签到 ,获得积分10
21秒前
22秒前
uikymh完成签到 ,获得积分0
23秒前
Kevin完成签到 ,获得积分10
26秒前
郝宇完成签到,获得积分10
26秒前
心随以动完成签到 ,获得积分10
26秒前
28秒前
所所应助Proustian采纳,获得10
28秒前
小马甲应助畅快的涵蕾采纳,获得10
32秒前
嘿嘿完成签到,获得积分10
33秒前
勋章完成签到 ,获得积分10
34秒前
冷静的忆秋完成签到,获得积分10
36秒前
ceeray23发布了新的文献求助20
37秒前
罗曼蒂克完成签到,获得积分10
37秒前
神奇五子棋完成签到 ,获得积分10
37秒前
ccm应助luyuran采纳,获得10
44秒前
贪玩雁山完成签到,获得积分10
45秒前
小二郎应助木林山水采纳,获得10
45秒前
cfyoung完成签到,获得积分10
47秒前
lwm不想看文献完成签到 ,获得积分10
48秒前
传奇3应助歪比巴卜采纳,获得10
54秒前
天天快乐应助zxx采纳,获得10
54秒前
Proustian发布了新的文献求助10
58秒前
1分钟前
木昆完成签到 ,获得积分10
1分钟前
dynamoo完成签到,获得积分10
1分钟前
歪比巴卜发布了新的文献求助10
1分钟前
龙虾发票完成签到,获得积分10
1分钟前
mm完成签到 ,获得积分10
1分钟前
高兴寒梦完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564775
求助须知:如何正确求助?哪些是违规求助? 4649490
关于积分的说明 14689018
捐赠科研通 4591475
什么是DOI,文献DOI怎么找? 2519172
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846