Intelligent skin lesion segmentation using deformable attention Transformer U‐Net with bidirectional attention mechanism in skin cancer images

分割 计算机科学 人工智能 皮肤癌 变压器 编码器 模式识别(心理学) 计算机视觉 医学 癌症 工程类 电压 内科学 电气工程 操作系统
作者
Lili Cai,Keke Hou,S. Zhou
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (8) 被引量:1
标识
DOI:10.1111/srt.13783
摘要

Abstract Background In recent years, the increasing prevalence of skin cancers, particularly malignant melanoma, has become a major concern for public health. The development of accurate automated segmentation techniques for skin lesions holds immense potential in alleviating the burden on medical professionals. It is of substantial clinical importance for the early identification and intervention of skin cancer. Nevertheless, the irregular shape, uneven color, and noise interference of the skin lesions have presented significant challenges to the precise segmentation. Therefore, it is crucial to develop a high‐precision and intelligent skin lesion segmentation framework for clinical treatment. Methods A precision‐driven segmentation model for skin cancer images is proposed based on the Transformer U‐Net, called BiADATU‐Net, which integrates the deformable attention Transformer and bidirectional attention blocks into the U‐Net. The encoder part utilizes deformable attention Transformer with dual attention block, allowing adaptive learning of global and local features. The decoder part incorporates specifically tailored scSE attention modules within skip connection layers to capture image‐specific context information for strong feature fusion. Additionally, deformable convolution is aggregated into two different attention blocks to learn irregular lesion features for high‐precision prediction. Results A series of experiments are conducted on four skin cancer image datasets (i.e., ISIC2016, ISIC2017, ISIC2018, and PH2). The findings show that our model exhibits satisfactory segmentation performance, all achieving an accuracy rate of over 96%. Conclusion Our experiment results validate the proposed BiADATU‐Net achieves competitive performance supremacy compared to some state‐of‐the‐art methods. It is potential and valuable in the field of skin lesion segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zbx完成签到,获得积分20
刚刚
X悦发布了新的文献求助10
1秒前
嘻嘻哈哈发布了新的文献求助10
1秒前
英俊的铭应助化雪彼岸采纳,获得10
1秒前
Am关闭了Am文献求助
2秒前
2秒前
2秒前
SS完成签到,获得积分20
3秒前
李健应助胖子一个采纳,获得10
3秒前
suk发布了新的文献求助10
4秒前
UU发布了新的文献求助10
4秒前
道阻且长发布了新的文献求助30
7秒前
8秒前
孙淳完成签到,获得积分10
8秒前
老实的棉花糖完成签到,获得积分10
9秒前
9秒前
科目三应助童童采纳,获得10
11秒前
11秒前
11秒前
胸大无肌发布了新的文献求助10
13秒前
14秒前
深情安青应助勤劳的可乐采纳,获得10
14秒前
14秒前
15秒前
思源应助daisy采纳,获得10
16秒前
CH完成签到,获得积分10
17秒前
18秒前
18秒前
胖子一个发布了新的文献求助10
18秒前
ZXQ发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
思源应助suk采纳,获得10
19秒前
20秒前
Flora完成签到 ,获得积分10
21秒前
23秒前
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
CodeCraft应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5508741
求助须知:如何正确求助?哪些是违规求助? 4603783
关于积分的说明 14487704
捐赠科研通 4538275
什么是DOI,文献DOI怎么找? 2486895
邀请新用户注册赠送积分活动 1469458
关于科研通互助平台的介绍 1441677