A machine learning-based data mining in medical examination data: a biological features-based biological age prediction model

过度拟合 机器学习 自编码 人工智能 理论(学习稳定性) 计算机科学 疾病 人口 深度学习 医学 人工神经网络 病理 环境卫生
作者
Qing Yang,Sunan Gao,Junfen Lin,Ke Lyu,Zexu Wu,Yuhao Chen,Yinwei Qiu,Yanrong Zhao,Wei Wang,Tianxiang Lin,Huiyun Pan,Ming Chen
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:23 (1) 被引量:4
标识
DOI:10.1186/s12859-022-04966-7
摘要

Biological age (BA) has been recognized as a more accurate indicator of aging than chronological age (CA). However, the current limitations include: insufficient attention to the incompleteness of medical data for constructing BA; Lack of machine learning-based BA (ML-BA) on the Chinese population; Neglect of the influence of model overfitting degree on the stability of the association results.Based on the medical examination data of the Chinese population (45-90 years), we first evaluated the most suitable missing interpolation method, then constructed 14 ML-BAs based on biomarkers, and finally explored the associations between ML-BAs and health statuses (healthy risk indicators and disease). We found that round-robin linear regression interpolation performed best, while AutoEncoder showed the highest interpolation stability. We further illustrated the potential overfitting problem in ML-BAs, which affected the stability of ML-Bas' associations with health statuses. We then proposed a composite ML-BA based on the Stacking method with a simple meta-model (STK-BA), which overcame the overfitting problem, and associated more strongly with CA (r = 0.66, P < 0.001), healthy risk indicators, disease counts, and six types of disease.We provided an improved aging measurement method for middle-aged and elderly groups in China, which can more stably capture aging characteristics other than CA, supporting the emerging application potential of machine learning in aging research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神魔啥完成签到,获得积分10
刚刚
Ganlou应助更深的蓝采纳,获得10
1秒前
Lucas应助光亮的太阳采纳,获得10
1秒前
JamesPei应助126采纳,获得10
1秒前
大鱼完成签到,获得积分10
1秒前
2秒前
zyy发布了新的文献求助10
2秒前
领导范儿应助年轻的熊猫采纳,获得10
2秒前
动听书雁完成签到,获得积分10
2秒前
Ly发布了新的文献求助10
3秒前
废寝忘食完成签到,获得积分10
3秒前
呵呵发布了新的文献求助10
4秒前
桃子发布了新的文献求助10
4秒前
小琦琦完成签到,获得积分10
5秒前
Darren发布了新的文献求助150
5秒前
5秒前
英俊的铭应助忐忑的邑采纳,获得10
5秒前
orixero应助贱小贱采纳,获得10
5秒前
领导范儿应助会会跑跑跑采纳,获得10
6秒前
6秒前
隐形的不愁完成签到,获得积分10
7秒前
唐晓秦发布了新的文献求助10
7秒前
9秒前
10秒前
zz发布了新的文献求助10
11秒前
11秒前
12秒前
FashionBoy应助依米采纳,获得10
13秒前
李健应助JD.采纳,获得10
13秒前
13秒前
酷波er应助lxy采纳,获得10
14秒前
14秒前
15秒前
丘比特应助强健的电话采纳,获得10
15秒前
15秒前
15秒前
zho发布了新的文献求助10
16秒前
16秒前
16秒前
悦耳的初阳完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309117
求助须知:如何正确求助?哪些是违规求助? 2942485
关于积分的说明 8509235
捐赠科研通 2617584
什么是DOI,文献DOI怎么找? 1430190
科研通“疑难数据库(出版商)”最低求助积分说明 664086
邀请新用户注册赠送积分活动 649251