A machine learning-based data mining in medical examination data: a biological features-based biological age prediction model

过度拟合 机器学习 自编码 人工智能 理论(学习稳定性) 计算机科学 疾病 人口 深度学习 医学 人工神经网络 病理 环境卫生
作者
Qing Yang,Sunan Gao,Junfen Lin,Ke Lyu,Zexu Wu,Yuhao Chen,Yinwei Qiu,Yanrong Zhao,Wei Wang,Tianxiang Lin,Huiyun Pan,Ming Chen
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:23 (1): 411-411 被引量:17
标识
DOI:10.1186/s12859-022-04966-7
摘要

Abstract Background Biological age (BA) has been recognized as a more accurate indicator of aging than chronological age (CA). However, the current limitations include: insufficient attention to the incompleteness of medical data for constructing BA; Lack of machine learning-based BA (ML-BA) on the Chinese population; Neglect of the influence of model overfitting degree on the stability of the association results. Methods and results Based on the medical examination data of the Chinese population (45–90 years), we first evaluated the most suitable missing interpolation method, then constructed 14 ML-BAs based on biomarkers, and finally explored the associations between ML-BAs and health statuses (healthy risk indicators and disease). We found that round-robin linear regression interpolation performed best, while AutoEncoder showed the highest interpolation stability. We further illustrated the potential overfitting problem in ML-BAs, which affected the stability of ML-Bas’ associations with health statuses. We then proposed a composite ML-BA based on the Stacking method with a simple meta-model (STK-BA), which overcame the overfitting problem, and associated more strongly with CA (r = 0.66, P < 0.001), healthy risk indicators, disease counts, and six types of disease. Conclusion We provided an improved aging measurement method for middle-aged and elderly groups in China, which can more stably capture aging characteristics other than CA, supporting the emerging application potential of machine learning in aging research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王佳完成签到,获得积分20
刚刚
1秒前
一个果儿应助Pearl采纳,获得10
1秒前
浮生六记完成签到 ,获得积分10
1秒前
缪欣桐完成签到,获得积分10
2秒前
JamesPei应助科研丽人采纳,获得10
3秒前
香蕉觅云应助贪玩阑香采纳,获得10
4秒前
郭奕沛完成签到,获得积分10
4秒前
求助人员发布了新的文献求助30
6秒前
一点点粽子完成签到,获得积分10
6秒前
科研通AI6应助楼下太吵了采纳,获得10
6秒前
7秒前
kkPi发布了新的文献求助10
9秒前
无语的大碗完成签到,获得积分10
10秒前
英吉利25发布了新的文献求助50
11秒前
11秒前
私欲宝宝发布了新的文献求助10
12秒前
傲娇时光完成签到,获得积分10
12秒前
Akim应助kkPi采纳,获得10
13秒前
紫丁香完成签到 ,获得积分10
14秒前
四叶草哦完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
机智乐蕊完成签到,获得积分10
16秒前
17秒前
故事细腻完成签到 ,获得积分10
17秒前
Zzy0816完成签到,获得积分10
17秒前
棉花完成签到 ,获得积分10
17秒前
无极微光应助学术牛马采纳,获得20
17秒前
18秒前
nanjiab发布了新的文献求助10
18秒前
18秒前
山雀完成签到,获得积分10
20秒前
任炳成完成签到,获得积分20
21秒前
Rowan发布了新的文献求助10
21秒前
kkkkpoa完成签到,获得积分10
22秒前
善良水池完成签到,获得积分10
22秒前
23秒前
Lucy发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600957
求助须知:如何正确求助?哪些是违规求助? 4686530
关于积分的说明 14844417
捐赠科研通 4679086
什么是DOI,文献DOI怎么找? 2539100
邀请新用户注册赠送积分活动 1505992
关于科研通互助平台的介绍 1471252