A machine learning-based data mining in medical examination data: a biological features-based biological age prediction model

过度拟合 机器学习 自编码 人工智能 理论(学习稳定性) 计算机科学 疾病 人口 深度学习 医学 人工神经网络 病理 环境卫生
作者
Qing Yang,Sunan Gao,Junfen Lin,Ke Lyu,Zexu Wu,Yuhao Chen,Yinwei Qiu,Yanrong Zhao,Wei Wang,Tianxiang Lin,Huiyun Pan,Ming Chen
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:23 (1) 被引量:4
标识
DOI:10.1186/s12859-022-04966-7
摘要

Biological age (BA) has been recognized as a more accurate indicator of aging than chronological age (CA). However, the current limitations include: insufficient attention to the incompleteness of medical data for constructing BA; Lack of machine learning-based BA (ML-BA) on the Chinese population; Neglect of the influence of model overfitting degree on the stability of the association results.Based on the medical examination data of the Chinese population (45-90 years), we first evaluated the most suitable missing interpolation method, then constructed 14 ML-BAs based on biomarkers, and finally explored the associations between ML-BAs and health statuses (healthy risk indicators and disease). We found that round-robin linear regression interpolation performed best, while AutoEncoder showed the highest interpolation stability. We further illustrated the potential overfitting problem in ML-BAs, which affected the stability of ML-Bas' associations with health statuses. We then proposed a composite ML-BA based on the Stacking method with a simple meta-model (STK-BA), which overcame the overfitting problem, and associated more strongly with CA (r = 0.66, P < 0.001), healthy risk indicators, disease counts, and six types of disease.We provided an improved aging measurement method for middle-aged and elderly groups in China, which can more stably capture aging characteristics other than CA, supporting the emerging application potential of machine learning in aging research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bmxi完成签到,获得积分20
1秒前
Borwn发布了新的文献求助10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
科研通AI6应助zhangxun采纳,获得30
1秒前
2秒前
今后应助张许昂采纳,获得10
2秒前
星辰大海应助张许昂采纳,获得10
2秒前
浮游应助张许昂采纳,获得10
2秒前
黑犬完成签到,获得积分10
2秒前
汉堡包应助张许昂采纳,获得10
2秒前
南屿完成签到,获得积分20
3秒前
辛勤的管道工完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
852应助樱桃汽水采纳,获得10
5秒前
bmxi发布了新的文献求助10
5秒前
nana发布了新的文献求助10
5秒前
王桑完成签到 ,获得积分10
5秒前
Chanyl完成签到,获得积分20
6秒前
哈哈哈发布了新的文献求助10
7秒前
suandlin完成签到 ,获得积分20
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
340881发布了新的文献求助10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得30
9秒前
Ava应助科研通管家采纳,获得10
9秒前
abc123发布了新的文献求助10
9秒前
小杭76应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883932
求助须知:如何正确求助?哪些是违规求助? 4169303
关于积分的说明 12936993
捐赠科研通 3929666
什么是DOI,文献DOI怎么找? 2156202
邀请新用户注册赠送积分活动 1174631
关于科研通互助平台的介绍 1079423