A machine learning-based data mining in medical examination data: a biological features-based biological age prediction model

过度拟合 机器学习 自编码 人工智能 理论(学习稳定性) 计算机科学 疾病 人口 深度学习 医学 人工神经网络 病理 环境卫生
作者
Qing Yang,Sunan Gao,Junfen Lin,Ke Lyu,Zexu Wu,Yuhao Chen,Yinwei Qiu,Yanrong Zhao,Wei Wang,Tianxiang Lin,Huiyun Pan,Ming Chen
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:23 (1): 411-411 被引量:17
标识
DOI:10.1186/s12859-022-04966-7
摘要

Abstract Background Biological age (BA) has been recognized as a more accurate indicator of aging than chronological age (CA). However, the current limitations include: insufficient attention to the incompleteness of medical data for constructing BA; Lack of machine learning-based BA (ML-BA) on the Chinese population; Neglect of the influence of model overfitting degree on the stability of the association results. Methods and results Based on the medical examination data of the Chinese population (45–90 years), we first evaluated the most suitable missing interpolation method, then constructed 14 ML-BAs based on biomarkers, and finally explored the associations between ML-BAs and health statuses (healthy risk indicators and disease). We found that round-robin linear regression interpolation performed best, while AutoEncoder showed the highest interpolation stability. We further illustrated the potential overfitting problem in ML-BAs, which affected the stability of ML-Bas’ associations with health statuses. We then proposed a composite ML-BA based on the Stacking method with a simple meta-model (STK-BA), which overcame the overfitting problem, and associated more strongly with CA (r = 0.66, P < 0.001), healthy risk indicators, disease counts, and six types of disease. Conclusion We provided an improved aging measurement method for middle-aged and elderly groups in China, which can more stably capture aging characteristics other than CA, supporting the emerging application potential of machine learning in aging research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
苻千愁发布了新的文献求助10
4秒前
终醒完成签到,获得积分10
4秒前
明亮冬萱完成签到,获得积分20
5秒前
5秒前
burger-v-发布了新的文献求助10
6秒前
xzy998应助谨慎的寒松采纳,获得10
7秒前
7秒前
xzy998应助谨慎的寒松采纳,获得10
7秒前
西瓜西瓜应助谨慎的寒松采纳,获得10
7秒前
xzy998应助谨慎的寒松采纳,获得10
7秒前
酷波er应助难过小凝采纳,获得10
7秒前
7秒前
orixero应助Lignin采纳,获得10
7秒前
7秒前
8秒前
西瓜西瓜应助谨慎的寒松采纳,获得10
8秒前
pluto应助谨慎的寒松采纳,获得10
8秒前
tf发布了新的文献求助10
8秒前
10秒前
流沙包完成签到,获得积分10
10秒前
石头发布了新的文献求助10
10秒前
恒星完成签到,获得积分10
11秒前
burger-v-完成签到,获得积分10
11秒前
12秒前
隐形曼青应助能干的吐司采纳,获得10
12秒前
13秒前
明亮冬萱发布了新的文献求助10
14秒前
GYM发布了新的文献求助20
14秒前
Darling发布了新的文献求助10
15秒前
科目三应助Lidanni采纳,获得10
15秒前
大模型应助甜甜的又柔采纳,获得10
16秒前
17秒前
pyp发布了新的文献求助10
17秒前
如风随水发布了新的文献求助10
17秒前
17秒前
丘比特应助tf采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640