A machine learning-based data mining in medical examination data: a biological features-based biological age prediction model

过度拟合 机器学习 自编码 人工智能 理论(学习稳定性) 计算机科学 疾病 人口 深度学习 医学 人工神经网络 病理 环境卫生
作者
Qing Yang,Sunan Gao,Junfen Lin,Ke Lyu,Zexu Wu,Yuhao Chen,Yinwei Qiu,Yanrong Zhao,Wei Wang,Tianxiang Lin,Huiyun Pan,Ming Chen
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:23 (1) 被引量:4
标识
DOI:10.1186/s12859-022-04966-7
摘要

Biological age (BA) has been recognized as a more accurate indicator of aging than chronological age (CA). However, the current limitations include: insufficient attention to the incompleteness of medical data for constructing BA; Lack of machine learning-based BA (ML-BA) on the Chinese population; Neglect of the influence of model overfitting degree on the stability of the association results.Based on the medical examination data of the Chinese population (45-90 years), we first evaluated the most suitable missing interpolation method, then constructed 14 ML-BAs based on biomarkers, and finally explored the associations between ML-BAs and health statuses (healthy risk indicators and disease). We found that round-robin linear regression interpolation performed best, while AutoEncoder showed the highest interpolation stability. We further illustrated the potential overfitting problem in ML-BAs, which affected the stability of ML-Bas' associations with health statuses. We then proposed a composite ML-BA based on the Stacking method with a simple meta-model (STK-BA), which overcame the overfitting problem, and associated more strongly with CA (r = 0.66, P < 0.001), healthy risk indicators, disease counts, and six types of disease.We provided an improved aging measurement method for middle-aged and elderly groups in China, which can more stably capture aging characteristics other than CA, supporting the emerging application potential of machine learning in aging research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SJD完成签到,获得积分0
刚刚
1秒前
独特元蝶完成签到,获得积分20
1秒前
ding应助zy95282采纳,获得10
2秒前
fairy完成签到 ,获得积分10
2秒前
3秒前
Auster完成签到,获得积分10
3秒前
3秒前
4秒前
须知函发布了新的文献求助10
6秒前
Liufgui应助旋转鸡爪子采纳,获得10
6秒前
王磊发布了新的文献求助10
8秒前
8秒前
理理理理发布了新的文献求助10
9秒前
缓慢乐天发布了新的文献求助10
9秒前
Nyxia发布了新的文献求助10
13秒前
13秒前
orixero应助Molinxue采纳,获得10
13秒前
绮玉完成签到,获得积分10
14秒前
15秒前
16秒前
缓慢乐天完成签到,获得积分10
17秒前
Jarvis完成签到,获得积分10
18秒前
18秒前
武穆杰发布了新的文献求助10
19秒前
20秒前
20秒前
Akim应助Nyxia采纳,获得10
21秒前
21秒前
茗佞发布了新的文献求助10
23秒前
568923发布了新的文献求助10
23秒前
zsm完成签到,获得积分10
23秒前
想人陪的一刀完成签到,获得积分20
24秒前
充电宝应助美味的薯片采纳,获得10
24秒前
25秒前
任性背包发布了新的文献求助10
26秒前
26秒前
quan发布了新的文献求助10
26秒前
26秒前
眼镜胖子发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070