IEEG-HCT: A Hierarchical CNN-Transformer Combined Network for Intracranial EEG Signal Identification

脑电图 计算机科学 变压器 鉴定(生物学) 语音识别 模式识别(心理学) 人工智能 神经科学 心理学 工程类 生物 电气工程 电压 植物
作者
Ming Yang,Kun Wang,Chang Li,Ruobing Qian,Xun Chen
出处
期刊:IEEE sensors letters [Institute of Electrical and Electronics Engineers]
卷期号:8 (2): 1-4 被引量:2
标识
DOI:10.1109/lsens.2024.3351913
摘要

In clinical neurology practice, the classification of intracranial electroencephalography (iEEG) recordings into artifacts, pathological, and physiological activities has traditionally been performed by expert visual review, which is a difficult, time-consuming, and subjective process. Recently, deep learning methods have shown remarkable success in automatic iEEG recognition. However, the current convolutional neural network (CNN)-based methods for iEEG signal analysis only focus on extracting local features, while largely disregarding the global context information. To address this limitation, we propose a novel hierarchical CNN-Transformer combined network for iEEG classification, named IEEG-HCT. The proposed model first employs a CNN Stem to extract preliminary local features, which are subsequently fed into a hierarchical alternating structure comprising of convolutional embedding (CE) blocks and Transformer blocks. Our explorations of combining CNN and Transformer models are conducted at both the macro and micro levels, allowing the resulting model to effectively capture both local features and long-distance dependencies. At the macro level, we utilize CE blocks to extract local features and reduce intermediate feature size, while at the micro level, we employ appropriate convolutions to enhance Transformer blocks. In addition, the hierarchical architecture allows for the extraction of multiscale features. We evaluated the proposed IEEG-HCT model on the multicenter iEEG dataset using out-of-institution and cross-subject validations. Experimental results demonstrate that the proposed model outperforms most existing models in all experimental settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zpli完成签到 ,获得积分10
刚刚
Jen1us完成签到,获得积分10
刚刚
刚刚
孜火发布了新的文献求助10
1秒前
畅快蓝血发布了新的文献求助10
1秒前
大力沛萍发布了新的文献求助10
1秒前
2秒前
专注思萱发布了新的文献求助10
3秒前
思源应助小白采纳,获得10
4秒前
苹果雁易发布了新的文献求助20
5秒前
andrele完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
SYLH应助背后的鹤轩采纳,获得10
6秒前
jizzy发布了新的文献求助10
6秒前
VDC应助11111采纳,获得30
7秒前
摘星012完成签到,获得积分10
7秒前
7秒前
wwewew发布了新的文献求助10
8秒前
紧张的怜寒完成签到,获得积分20
8秒前
这个夏天发布了新的文献求助10
9秒前
9秒前
9秒前
英姑应助王唯任采纳,获得10
9秒前
10秒前
JamesPei应助孜火采纳,获得10
10秒前
10秒前
10秒前
健忘思柔发布了新的文献求助10
10秒前
12秒前
13秒前
请叫我风吹麦浪应助TIAN采纳,获得10
13秒前
see发布了新的文献求助10
13秒前
yu完成签到 ,获得积分10
14秒前
小美酱发布了新的文献求助10
14秒前
15秒前
lalala发布了新的文献求助10
15秒前
林123发布了新的文献求助10
16秒前
科研通AI5应助啦啦啦啦采纳,获得10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476842
求助须知:如何正确求助?哪些是违规求助? 3068424
关于积分的说明 9107761
捐赠科研通 2759834
什么是DOI,文献DOI怎么找? 1514308
邀请新用户注册赠送积分活动 700220
科研通“疑难数据库(出版商)”最低求助积分说明 699399