Scheduling Multiobjective Dynamic Surgery Problems via Q-Learning-Based Meta-Heuristics

启发式 计算机科学 符号 数学优化 调度(生产过程) 人工智能 算法 数学 算术
作者
Hui Yu,Kaizhou Gao,Naiqi Wu,MengChu Zhou,Ponnuthurai Nagaratnam Suganthan,Shouguang Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (6): 3321-3333 被引量:15
标识
DOI:10.1109/tsmc.2024.3352522
摘要

This work addresses multiobjective dynamic surgery scheduling problems with considering uncertain setup time and processing time. When dealing with them, researchers have to consider rescheduling due to the arrivals of urgent patients. The goals are to minimize the fuzzy total medical cost, fuzzy maximum completion time, and maximize average patient satisfaction. First, we develop a mathematical model for describing the addressed problems. The uncertain time is expressed by triangular fuzzy numbers. Then, four meta-heuristics are improved, and eight variants are developed, including artificial bee colony, genetic algorithm, teaching-learning-base optimization, and imperialist competitive algorithm. For improving initial solutions' quality, two initialization strategies are developed. Six local search strategies are proposed for fine exploitation and a $Q$ -learning algorithm is used to choose the suitable strategies among them in the iterative process of the meta-heuristics. The states and actions of $Q$ -learning are defined according to the characteristic of the addressed problems. Finally, the proposed algorithms are tested for 57 instances with different scales. The analysis and discussions verify that the improved artificial bee colony with $Q$ -learning is the most competitive one for scheduling the dynamic surgery problems among all compared algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万叶发布了新的文献求助10
1秒前
haofan17完成签到,获得积分0
1秒前
YY发布了新的文献求助30
1秒前
Shaynin完成签到,获得积分10
2秒前
充电宝应助fanli采纳,获得10
2秒前
XXXX完成签到,获得积分10
3秒前
发顶刊完成签到,获得积分10
3秒前
小二郎应助少年弦采纳,获得10
3秒前
weiyu发布了新的文献求助10
4秒前
wangbq完成签到 ,获得积分10
4秒前
5秒前
Swim完成签到,获得积分20
6秒前
丘比特应助邵晓啸采纳,获得20
8秒前
科研通AI2S应助发顶刊采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
好运来应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
知许解夏应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
李爱国应助科研通管家采纳,获得30
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
10秒前
lee发布了新的文献求助10
11秒前
leodu完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388