Scheduling Multiobjective Dynamic Surgery Problems via Q-Learning-Based Meta-Heuristics

启发式 计算机科学 符号 数学优化 调度(生产过程) 人工智能 算法 数学 算术
作者
Hui Yu,Kaizhou Gao,Naiqi Wu,MengChu Zhou,Ponnuthurai Nagaratnam Suganthan,Shouguang Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (6): 3321-3333 被引量:19
标识
DOI:10.1109/tsmc.2024.3352522
摘要

This work addresses multiobjective dynamic surgery scheduling problems with considering uncertain setup time and processing time. When dealing with them, researchers have to consider rescheduling due to the arrivals of urgent patients. The goals are to minimize the fuzzy total medical cost, fuzzy maximum completion time, and maximize average patient satisfaction. First, we develop a mathematical model for describing the addressed problems. The uncertain time is expressed by triangular fuzzy numbers. Then, four meta-heuristics are improved, and eight variants are developed, including artificial bee colony, genetic algorithm, teaching-learning-base optimization, and imperialist competitive algorithm. For improving initial solutions' quality, two initialization strategies are developed. Six local search strategies are proposed for fine exploitation and a $Q$ -learning algorithm is used to choose the suitable strategies among them in the iterative process of the meta-heuristics. The states and actions of $Q$ -learning are defined according to the characteristic of the addressed problems. Finally, the proposed algorithms are tested for 57 instances with different scales. The analysis and discussions verify that the improved artificial bee colony with $Q$ -learning is the most competitive one for scheduling the dynamic surgery problems among all compared algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
w_tiger完成签到 ,获得积分10
刚刚
蒋依伶发布了新的文献求助10
2秒前
2秒前
快帮我找找完成签到,获得积分10
2秒前
苗条的一一完成签到,获得积分10
2秒前
wackykao完成签到 ,获得积分10
3秒前
3秒前
xy完成签到,获得积分10
3秒前
莫妮卡.宾发布了新的文献求助10
3秒前
Hello应助活力的语堂采纳,获得10
3秒前
老朱完成签到,获得积分10
4秒前
5秒前
5秒前
乐乐应助AgAin采纳,获得10
6秒前
Eason_C完成签到 ,获得积分10
6秒前
8秒前
yu完成签到,获得积分10
9秒前
CipherSage应助guozizi采纳,获得10
10秒前
蒋依伶完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
11秒前
田様应助平硕采纳,获得10
12秒前
12秒前
热心观众完成签到,获得积分10
15秒前
15秒前
Zoe发布了新的文献求助10
16秒前
含蓄的采枫完成签到,获得积分10
19秒前
董春伟应助科研通管家采纳,获得20
20秒前
隐形曼青应助科研通管家采纳,获得50
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
专注的妍应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
20秒前
一路有你完成签到 ,获得积分10
20秒前
JamesPei应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
XCXC应助科研通管家采纳,获得10
21秒前
21秒前
脑洞疼应助科研通管家采纳,获得20
21秒前
浮游应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911940
求助须知:如何正确求助?哪些是违规求助? 4187232
关于积分的说明 13003449
捐赠科研通 3955200
什么是DOI,文献DOI怎么找? 2168624
邀请新用户注册赠送积分活动 1187094
关于科研通互助平台的介绍 1094340