Scheduling Multiobjective Dynamic Surgery Problems via Q-Learning-Based Meta-Heuristics

启发式 计算机科学 符号 数学优化 调度(生产过程) 人工智能 算法 数学 算术
作者
Hui Yu,Kaizhou Gao,Naiqi Wu,MengChu Zhou,Ponnuthurai Nagaratnam Suganthan,Shouguang Wang
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (6): 3321-3333 被引量:8
标识
DOI:10.1109/tsmc.2024.3352522
摘要

This work addresses multiobjective dynamic surgery scheduling problems with considering uncertain setup time and processing time. When dealing with them, researchers have to consider rescheduling due to the arrivals of urgent patients. The goals are to minimize the fuzzy total medical cost, fuzzy maximum completion time, and maximize average patient satisfaction. First, we develop a mathematical model for describing the addressed problems. The uncertain time is expressed by triangular fuzzy numbers. Then, four meta-heuristics are improved, and eight variants are developed, including artificial bee colony, genetic algorithm, teaching-learning-base optimization, and imperialist competitive algorithm. For improving initial solutions' quality, two initialization strategies are developed. Six local search strategies are proposed for fine exploitation and a $Q$ -learning algorithm is used to choose the suitable strategies among them in the iterative process of the meta-heuristics. The states and actions of $Q$ -learning are defined according to the characteristic of the addressed problems. Finally, the proposed algorithms are tested for 57 instances with different scales. The analysis and discussions verify that the improved artificial bee colony with $Q$ -learning is the most competitive one for scheduling the dynamic surgery problems among all compared algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
睡不醒发布了新的文献求助10
2秒前
搜集达人应助wangyaya采纳,获得10
2秒前
希望天下0贩的0应助XD采纳,获得10
2秒前
sss发布了新的文献求助10
2秒前
3秒前
麦兜完成签到 ,获得积分10
3秒前
YCH完成签到,获得积分10
3秒前
4秒前
Monn完成签到,获得积分10
5秒前
一念之间完成签到,获得积分10
5秒前
水濑心源完成签到,获得积分10
6秒前
神探完成签到 ,获得积分10
6秒前
7秒前
8秒前
账户已注销应助1huiqina采纳,获得30
8秒前
9秒前
专注的安筠关注了科研通微信公众号
9秒前
strings发布了新的文献求助10
9秒前
10秒前
13秒前
朝阳完成签到 ,获得积分10
13秒前
14秒前
Jay完成签到 ,获得积分10
14秒前
yhr发布了新的文献求助10
14秒前
甜甜戎发布了新的文献求助10
14秒前
原鑫完成签到,获得积分10
15秒前
16秒前
wufang给wufang的求助进行了留言
16秒前
majf完成签到,获得积分10
16秒前
左左完成签到,获得积分20
17秒前
生生世世完成签到,获得积分10
17秒前
18秒前
XD发布了新的文献求助10
18秒前
叮咚发布了新的文献求助10
19秒前
gyyzj完成签到,获得积分10
19秒前
19秒前
生生世世发布了新的文献求助10
20秒前
20秒前
左左发布了新的文献求助10
21秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137922
求助须知:如何正确求助?哪些是违规求助? 2788820
关于积分的说明 7788709
捐赠科研通 2445219
什么是DOI,文献DOI怎么找? 1300219
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046