Intelligently Quantifying the Entire Irregular Dental Structure

分割 组内相关 人工智能 交叉口(航空) 散点图 均方误差 加权 计算机科学 模式识别(心理学) 统计 数学 机器学习 再现性 医学 地图学 放射科 地理
作者
Han Liu,Jinghao Duan,Ping Zeng,Miaojing Shi,Junwen Zeng,Stephanie Chen,Zhenyu Gong,Zetao Chen,Jing Qin,Zetao Chen
出处
期刊:Journal of Dental Research [SAGE]
卷期号:103 (4): 378-387 被引量:2
标识
DOI:10.1177/00220345241226871
摘要

Quantitative analysis of irregular anatomical structures is crucial in oral medicine, but clinicians often typically measure only several representative indicators within the structure as references. Deep learning semantic segmentation offers the potential for entire quantitative analysis. However, challenges persist, including segmentation difficulties due to unclear boundaries and acquiring measurement landmarks for clinical needs in entire quantitative analysis. Taking the palatal alveolar bone as an example, we proposed an artificial intelligence measurement tool for the entire quantitative analysis of irregular dental structures. To expand the applicability, we have included lightweight networks with fewer parameters and lower computational demands. Our approach finally used the lightweight model LU-Net, addressing segmentation challenges caused by unclear boundaries through a compensation module. Additional enamel segmentation was conducted to establish a measurement coordinate system. Ultimately, we presented the entire quantitative information within the structure in a manner that meets clinical needs. The tool achieved excellent segmentation results, manifested by high Dice coefficients (0.934 and 0.949), intersection over union (0.888 and 0.907), and area under the curve (0.943 and 0.949) for palatal alveolar bone and enamel in the test set. In subsequent measurements, the tool visualizes the quantitative information within the target structure by scatter plots. When comparing the measurements against representative indicators, the tool’s measurement results show no statistically significant difference from the ground truth, with small mean absolute error, root mean squared error, and errors interval. Bland-Altman plots and intraclass correlation coefficients indicate the satisfactory agreement compared with manual measurements. We proposed a novel intelligent approach to address the entire quantitative analysis of irregular image structures in the clinical setting. This contributes to enabling clinicians to swiftly and comprehensively grasp structural features, facilitating the design of more personalized treatment plans for different patients, enhancing clinical efficiency and treatment success rates in turn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
废羊羊完成签到 ,获得积分10
刚刚
刚刚
1秒前
冰冰大王完成签到,获得积分10
2秒前
小妮子完成签到,获得积分10
2秒前
wohawohaa完成签到,获得积分10
2秒前
彭蓬给彭蓬的求助进行了留言
3秒前
3秒前
实验顺利应助Gavin采纳,获得30
3秒前
吕曼完成签到,获得积分10
3秒前
晨晨晨完成签到,获得积分10
4秒前
egoistMM完成签到,获得积分10
4秒前
清心淡如水完成签到 ,获得积分10
4秒前
4秒前
冰冰大王发布了新的文献求助20
5秒前
Jasper应助修澈采纳,获得10
5秒前
霜降发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
小鹿5460完成签到,获得积分10
6秒前
lylyspeechless完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
小妮子发布了新的文献求助10
7秒前
xiaoxiao完成签到,获得积分10
7秒前
7秒前
7秒前
Jiping Ni完成签到,获得积分10
7秒前
JY'完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
胡雅琴完成签到,获得积分10
9秒前
chigga发布了新的文献求助10
11秒前
subohr完成签到,获得积分10
11秒前
FBSoos发布了新的文献求助10
12秒前
坚强胡萝卜完成签到,获得积分10
12秒前
先知完成签到,获得积分10
12秒前
大方的白开水完成签到,获得积分10
12秒前
miaogm完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027