Intelligently Quantifying the Entire Irregular Dental Structure

分割 组内相关 人工智能 交叉口(航空) 散点图 均方误差 加权 计算机科学 模式识别(心理学) 统计 数学 机器学习 再现性 医学 地图学 放射科 地理
作者
Han Liu,Jinghao Duan,Ping Zeng,Miaojing Shi,Junwen Zeng,Stephanie Chen,Zhenyu Gong,Zetao Chen,Jing Qin,Zetao Chen
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:103 (4): 378-387
标识
DOI:10.1177/00220345241226871
摘要

Quantitative analysis of irregular anatomical structures is crucial in oral medicine, but clinicians often typically measure only several representative indicators within the structure as references. Deep learning semantic segmentation offers the potential for entire quantitative analysis. However, challenges persist, including segmentation difficulties due to unclear boundaries and acquiring measurement landmarks for clinical needs in entire quantitative analysis. Taking the palatal alveolar bone as an example, we proposed an artificial intelligence measurement tool for the entire quantitative analysis of irregular dental structures. To expand the applicability, we have included lightweight networks with fewer parameters and lower computational demands. Our approach finally used the lightweight model LU-Net, addressing segmentation challenges caused by unclear boundaries through a compensation module. Additional enamel segmentation was conducted to establish a measurement coordinate system. Ultimately, we presented the entire quantitative information within the structure in a manner that meets clinical needs. The tool achieved excellent segmentation results, manifested by high Dice coefficients (0.934 and 0.949), intersection over union (0.888 and 0.907), and area under the curve (0.943 and 0.949) for palatal alveolar bone and enamel in the test set. In subsequent measurements, the tool visualizes the quantitative information within the target structure by scatter plots. When comparing the measurements against representative indicators, the tool's measurement results show no statistically significant difference from the ground truth, with small mean absolute error, root mean squared error, and errors interval. Bland-Altman plots and intraclass correlation coefficients indicate the satisfactory agreement compared with manual measurements. We proposed a novel intelligent approach to address the entire quantitative analysis of irregular image structures in the clinical setting. This contributes to enabling clinicians to swiftly and comprehensively grasp structural features, facilitating the design of more personalized treatment plans for different patients, enhancing clinical efficiency and treatment success rates in turn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助不要讨好十三采纳,获得10
1秒前
1秒前
2秒前
dayu发布了新的文献求助10
6秒前
深情安青应助谦让水香采纳,获得10
6秒前
大个应助Enoch采纳,获得10
8秒前
现代的无春完成签到 ,获得积分10
9秒前
xinyue完成签到 ,获得积分10
10秒前
11秒前
12秒前
12秒前
13秒前
13秒前
可罗雀完成签到,获得积分10
14秒前
十一完成签到,获得积分10
14秒前
努力加油煤老八完成签到 ,获得积分10
15秒前
谦让水香完成签到,获得积分10
15秒前
不要讨好十三完成签到,获得积分10
16秒前
iNk应助dayu采纳,获得20
18秒前
十一发布了新的文献求助10
18秒前
18秒前
19秒前
言言完成签到,获得积分10
20秒前
爱吃饼干的土拨鼠完成签到,获得积分10
25秒前
名丿完成签到,获得积分10
27秒前
27秒前
27秒前
28秒前
30秒前
华仔应助JIANYOUFU采纳,获得10
31秒前
hhhhh完成签到,获得积分10
31秒前
Enoch发布了新的文献求助10
32秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
Zzz发布了新的文献求助10
32秒前
Shina完成签到,获得积分10
32秒前
上官若男应助科研通管家采纳,获得30
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
顾矜应助科研通管家采纳,获得10
33秒前
Ava应助科研通管家采纳,获得10
33秒前
Ava应助科研通管家采纳,获得10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782