亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligently Quantifying the Entire Irregular Dental Structure

分割 组内相关 人工智能 交叉口(航空) 散点图 均方误差 加权 计算机科学 模式识别(心理学) 统计 数学 机器学习 再现性 医学 地图学 放射科 地理
作者
Han Liu,Jinghao Duan,Ping Zeng,Miaojing Shi,Junwen Zeng,Stephanie Chen,Zhenyu Gong,Zetao Chen,Jing Qin,Zetao Chen
出处
期刊:Journal of Dental Research [SAGE]
卷期号:103 (4): 378-387 被引量:2
标识
DOI:10.1177/00220345241226871
摘要

Quantitative analysis of irregular anatomical structures is crucial in oral medicine, but clinicians often typically measure only several representative indicators within the structure as references. Deep learning semantic segmentation offers the potential for entire quantitative analysis. However, challenges persist, including segmentation difficulties due to unclear boundaries and acquiring measurement landmarks for clinical needs in entire quantitative analysis. Taking the palatal alveolar bone as an example, we proposed an artificial intelligence measurement tool for the entire quantitative analysis of irregular dental structures. To expand the applicability, we have included lightweight networks with fewer parameters and lower computational demands. Our approach finally used the lightweight model LU-Net, addressing segmentation challenges caused by unclear boundaries through a compensation module. Additional enamel segmentation was conducted to establish a measurement coordinate system. Ultimately, we presented the entire quantitative information within the structure in a manner that meets clinical needs. The tool achieved excellent segmentation results, manifested by high Dice coefficients (0.934 and 0.949), intersection over union (0.888 and 0.907), and area under the curve (0.943 and 0.949) for palatal alveolar bone and enamel in the test set. In subsequent measurements, the tool visualizes the quantitative information within the target structure by scatter plots. When comparing the measurements against representative indicators, the tool’s measurement results show no statistically significant difference from the ground truth, with small mean absolute error, root mean squared error, and errors interval. Bland-Altman plots and intraclass correlation coefficients indicate the satisfactory agreement compared with manual measurements. We proposed a novel intelligent approach to address the entire quantitative analysis of irregular image structures in the clinical setting. This contributes to enabling clinicians to swiftly and comprehensively grasp structural features, facilitating the design of more personalized treatment plans for different patients, enhancing clinical efficiency and treatment success rates in turn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lsl应助Atopos采纳,获得30
刚刚
Criminology34应助Atopos采纳,获得10
12秒前
1分钟前
1分钟前
1分钟前
嘟嘟完成签到 ,获得积分10
1分钟前
Aray完成签到 ,获得积分10
1分钟前
taster完成签到,获得积分10
1分钟前
2分钟前
光亮静槐完成签到 ,获得积分10
2分钟前
2分钟前
SilverPlane发布了新的文献求助10
2分钟前
SilverPlane完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
ding应助阳光的星月采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
4分钟前
烂漫的绿茶完成签到 ,获得积分10
4分钟前
DONG发布了新的文献求助10
4分钟前
寂寞的尔丝完成签到 ,获得积分10
4分钟前
小小绿发布了新的文献求助50
5分钟前
超级的千青完成签到 ,获得积分10
5分钟前
ding应助知闲采纳,获得10
6分钟前
6分钟前
满意机器猫完成签到 ,获得积分10
6分钟前
宁不正发布了新的文献求助10
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
情怀应助科研通管家采纳,获得10
6分钟前
6分钟前
赘婿应助宁不正采纳,获得10
6分钟前
7分钟前
7分钟前
小小绿完成签到,获得积分20
7分钟前
量子星尘发布了新的文献求助10
7分钟前
Sylvia_J完成签到 ,获得积分10
7分钟前
8分钟前
cy0824完成签到 ,获得积分10
8分钟前
hhh完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635145
求助须知:如何正确求助?哪些是违规求助? 4734927
关于积分的说明 14989786
捐赠科研通 4792851
什么是DOI,文献DOI怎么找? 2559937
邀请新用户注册赠送积分活动 1520202
关于科研通互助平台的介绍 1480280