Intelligently Quantifying the Entire Irregular Dental Structure

分割 组内相关 人工智能 交叉口(航空) 散点图 均方误差 加权 计算机科学 模式识别(心理学) 统计 数学 机器学习 再现性 医学 地图学 放射科 地理
作者
Han Liu,Jinghao Duan,Ping Zeng,Miaojing Shi,Junwen Zeng,Stephanie Chen,Zhenyu Gong,Zetao Chen,Jing Qin,Zetao Chen
出处
期刊:Journal of Dental Research [SAGE Publishing]
卷期号:103 (4): 378-387 被引量:2
标识
DOI:10.1177/00220345241226871
摘要

Quantitative analysis of irregular anatomical structures is crucial in oral medicine, but clinicians often typically measure only several representative indicators within the structure as references. Deep learning semantic segmentation offers the potential for entire quantitative analysis. However, challenges persist, including segmentation difficulties due to unclear boundaries and acquiring measurement landmarks for clinical needs in entire quantitative analysis. Taking the palatal alveolar bone as an example, we proposed an artificial intelligence measurement tool for the entire quantitative analysis of irregular dental structures. To expand the applicability, we have included lightweight networks with fewer parameters and lower computational demands. Our approach finally used the lightweight model LU-Net, addressing segmentation challenges caused by unclear boundaries through a compensation module. Additional enamel segmentation was conducted to establish a measurement coordinate system. Ultimately, we presented the entire quantitative information within the structure in a manner that meets clinical needs. The tool achieved excellent segmentation results, manifested by high Dice coefficients (0.934 and 0.949), intersection over union (0.888 and 0.907), and area under the curve (0.943 and 0.949) for palatal alveolar bone and enamel in the test set. In subsequent measurements, the tool visualizes the quantitative information within the target structure by scatter plots. When comparing the measurements against representative indicators, the tool's measurement results show no statistically significant difference from the ground truth, with small mean absolute error, root mean squared error, and errors interval. Bland-Altman plots and intraclass correlation coefficients indicate the satisfactory agreement compared with manual measurements. We proposed a novel intelligent approach to address the entire quantitative analysis of irregular image structures in the clinical setting. This contributes to enabling clinicians to swiftly and comprehensively grasp structural features, facilitating the design of more personalized treatment plans for different patients, enhancing clinical efficiency and treatment success rates in turn.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hurb完成签到,获得积分10
1秒前
咚咚发布了新的文献求助10
1秒前
lemon完成签到,获得积分10
1秒前
黑尼格发布了新的文献求助10
2秒前
Gotyababy发布了新的文献求助10
2秒前
科研通AI2S应助徐昊雯采纳,获得10
3秒前
上官若男应助健康的雪萍采纳,获得10
3秒前
3秒前
3秒前
长颈鹿没有脖子完成签到 ,获得积分10
4秒前
昵称呢完成签到,获得积分10
5秒前
科研通AI5应助syk采纳,获得10
5秒前
贝贝完成签到,获得积分10
6秒前
7秒前
wanghao婷完成签到,获得积分20
7秒前
无限松发布了新的文献求助10
7秒前
7秒前
ekswai发布了新的文献求助10
7秒前
Eleven888关注了科研通微信公众号
8秒前
8秒前
林机一动完成签到,获得积分10
8秒前
11完成签到,获得积分10
8秒前
9秒前
小v1212完成签到,获得积分20
9秒前
lemon发布了新的文献求助10
10秒前
zzzxx完成签到,获得积分10
11秒前
如来发布了新的文献求助20
11秒前
lgq12697应助萤火虫采纳,获得10
11秒前
11秒前
岩岩岩完成签到,获得积分10
11秒前
科研通AI6应助Matthew_G采纳,获得10
12秒前
Hhd完成签到,获得积分10
12秒前
银匠完成签到,获得积分10
12秒前
什么完成签到,获得积分10
12秒前
CodeCraft应助NEO采纳,获得10
13秒前
11发布了新的文献求助10
13秒前
beyondjun发布了新的文献求助10
13秒前
科研小白发布了新的文献求助10
14秒前
YA关注了科研通微信公众号
14秒前
panda_elvis发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709