Exploring the Potential of ChatGPT-4 in Predicting Refractive Surgery Categorizations: Comparative Study

激光矫视 接收机工作特性 分类 人工智能 随机森林 计算机科学 机器学习 医学 医学物理学 验光服务 眼科 角膜
作者
Aleksandar Ćirković,Toam Katz
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e51798-e51798 被引量:4
标识
DOI:10.2196/51798
摘要

Background Refractive surgery research aims to optimally precategorize patients by their suitability for various types of surgery. Recent advances have led to the development of artificial intelligence–powered algorithms, including machine learning approaches, to assess risks and enhance workflow. Large language models (LLMs) like ChatGPT-4 (OpenAI LP) have emerged as potential general artificial intelligence tools that can assist across various disciplines, possibly including refractive surgery decision-making. However, their actual capabilities in precategorizing refractive surgery patients based on real-world parameters remain unexplored. Objective This exploratory study aimed to validate ChatGPT-4’s capabilities in precategorizing refractive surgery patients based on commonly used clinical parameters. The goal was to assess whether ChatGPT-4’s performance when categorizing batch inputs is comparable to those made by a refractive surgeon. A simple binary set of categories (patient suitable for laser refractive surgery or not) as well as a more detailed set were compared. Methods Data from 100 consecutive patients from a refractive clinic were anonymized and analyzed. Parameters included age, sex, manifest refraction, visual acuity, and various corneal measurements and indices from Scheimpflug imaging. This study compared ChatGPT-4’s performance with a clinician’s categorizations using Cohen κ coefficient, a chi-square test, a confusion matrix, accuracy, precision, recall, F1-score, and receiver operating characteristic area under the curve. Results A statistically significant noncoincidental accordance was found between ChatGPT-4 and the clinician’s categorizations with a Cohen κ coefficient of 0.399 for 6 categories (95% CI 0.256-0.537) and 0.610 for binary categorization (95% CI 0.372-0.792). The model showed temporal instability and response variability, however. The chi-square test on 6 categories indicated an association between the 2 raters’ distributions (χ²5=94.7, P<.001). Here, the accuracy was 0.68, precision 0.75, recall 0.68, and F1-score 0.70. For 2 categories, the accuracy was 0.88, precision 0.88, recall 0.88, F1-score 0.88, and area under the curve 0.79. Conclusions This study revealed that ChatGPT-4 exhibits potential as a precategorization tool in refractive surgery, showing promising agreement with clinician categorizations. However, its main limitations include, among others, dependency on solely one human rater, small sample size, the instability and variability of ChatGPT’s (OpenAI LP) output between iterations and nontransparency of the underlying models. The results encourage further exploration into the application of LLMs like ChatGPT-4 in health care, particularly in decision-making processes that require understanding vast clinical data. Future research should focus on defining the model’s accuracy with prompt and vignette standardization, detecting confounding factors, and comparing to other versions of ChatGPT-4 and other LLMs to pave the way for larger-scale validation and real-world implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助30
1秒前
3秒前
3秒前
4秒前
OKAY完成签到,获得积分10
4秒前
5秒前
Kvolu29完成签到,获得积分10
6秒前
8秒前
ll发布了新的文献求助10
8秒前
CC发布了新的文献求助10
9秒前
宜醉宜游宜睡应助鹦鹉采纳,获得10
9秒前
yingying发布了新的文献求助10
10秒前
威武的皮卡丘完成签到,获得积分10
12秒前
寻道图强应助打不溜采纳,获得30
12秒前
14秒前
CodeCraft应助欢喜宝马采纳,获得10
16秒前
斯文媚颜发布了新的文献求助10
17秒前
St应助kkkkkk采纳,获得10
17秒前
隐形曼青应助小怪兽采纳,获得10
18秒前
羊毛发布了新的文献求助10
18秒前
互助遵法尚德应助123采纳,获得10
19秒前
CipherSage应助啊懂采纳,获得10
22秒前
威威关注了科研通微信公众号
22秒前
22秒前
dayu发布了新的文献求助10
23秒前
Ava应助ured采纳,获得10
29秒前
小怪兽完成签到,获得积分10
29秒前
欢喜的荔枝完成签到,获得积分20
30秒前
guozeyi发布了新的文献求助10
31秒前
lalali完成签到 ,获得积分10
33秒前
啊懂发布了新的文献求助10
34秒前
34秒前
35秒前
35秒前
夏天无发布了新的文献求助10
37秒前
可爱的函函应助Zoe采纳,获得30
37秒前
ihc完成签到,获得积分10
38秒前
guozeyi完成签到,获得积分10
38秒前
40秒前
42秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124565
求助须知:如何正确求助?哪些是违规求助? 2774891
关于积分的说明 7724521
捐赠科研通 2430358
什么是DOI,文献DOI怎么找? 1291087
科研通“疑难数据库(出版商)”最低求助积分说明 622052
版权声明 600297