清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring the Potential of ChatGPT-4 in Predicting Refractive Surgery Categorizations: Comparative Study

激光矫视 接收机工作特性 分类 人工智能 随机森林 计算机科学 机器学习 医学 医学物理学 验光服务 眼科 角膜
作者
Aleksandar Ćirković,Toam Katz
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e51798-e51798 被引量:4
标识
DOI:10.2196/51798
摘要

Background Refractive surgery research aims to optimally precategorize patients by their suitability for various types of surgery. Recent advances have led to the development of artificial intelligence–powered algorithms, including machine learning approaches, to assess risks and enhance workflow. Large language models (LLMs) like ChatGPT-4 (OpenAI LP) have emerged as potential general artificial intelligence tools that can assist across various disciplines, possibly including refractive surgery decision-making. However, their actual capabilities in precategorizing refractive surgery patients based on real-world parameters remain unexplored. Objective This exploratory study aimed to validate ChatGPT-4’s capabilities in precategorizing refractive surgery patients based on commonly used clinical parameters. The goal was to assess whether ChatGPT-4’s performance when categorizing batch inputs is comparable to those made by a refractive surgeon. A simple binary set of categories (patient suitable for laser refractive surgery or not) as well as a more detailed set were compared. Methods Data from 100 consecutive patients from a refractive clinic were anonymized and analyzed. Parameters included age, sex, manifest refraction, visual acuity, and various corneal measurements and indices from Scheimpflug imaging. This study compared ChatGPT-4’s performance with a clinician’s categorizations using Cohen κ coefficient, a chi-square test, a confusion matrix, accuracy, precision, recall, F1-score, and receiver operating characteristic area under the curve. Results A statistically significant noncoincidental accordance was found between ChatGPT-4 and the clinician’s categorizations with a Cohen κ coefficient of 0.399 for 6 categories (95% CI 0.256-0.537) and 0.610 for binary categorization (95% CI 0.372-0.792). The model showed temporal instability and response variability, however. The chi-square test on 6 categories indicated an association between the 2 raters’ distributions (χ²5=94.7, P<.001). Here, the accuracy was 0.68, precision 0.75, recall 0.68, and F1-score 0.70. For 2 categories, the accuracy was 0.88, precision 0.88, recall 0.88, F1-score 0.88, and area under the curve 0.79. Conclusions This study revealed that ChatGPT-4 exhibits potential as a precategorization tool in refractive surgery, showing promising agreement with clinician categorizations. However, its main limitations include, among others, dependency on solely one human rater, small sample size, the instability and variability of ChatGPT’s (OpenAI LP) output between iterations and nontransparency of the underlying models. The results encourage further exploration into the application of LLMs like ChatGPT-4 in health care, particularly in decision-making processes that require understanding vast clinical data. Future research should focus on defining the model’s accuracy with prompt and vignette standardization, detecting confounding factors, and comparing to other versions of ChatGPT-4 and other LLMs to pave the way for larger-scale validation and real-world implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科科通通完成签到,获得积分10
1秒前
柴郡喵完成签到,获得积分10
5秒前
0m0完成签到 ,获得积分10
9秒前
zm完成签到 ,获得积分10
14秒前
大饼完成签到 ,获得积分10
25秒前
空白完成签到 ,获得积分10
45秒前
xinjiasuki完成签到 ,获得积分10
47秒前
53秒前
小天小天完成签到 ,获得积分10
1分钟前
白昼完成签到 ,获得积分10
1分钟前
弧光完成签到 ,获得积分0
1分钟前
feiyang完成签到 ,获得积分10
1分钟前
大胆的碧菡完成签到,获得积分10
1分钟前
图南完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zw完成签到,获得积分10
1分钟前
Xzx1995完成签到 ,获得积分10
1分钟前
如意书桃完成签到 ,获得积分10
1分钟前
大雪完成签到 ,获得积分10
1分钟前
1分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
蔡勇强完成签到 ,获得积分10
2分钟前
Wenwen0809完成签到 ,获得积分20
2分钟前
海贼王的男人完成签到 ,获得积分10
2分钟前
从全世界路过完成签到 ,获得积分10
2分钟前
2分钟前
詹姆斯哈登完成签到,获得积分10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
fdwonder完成签到,获得积分10
2分钟前
个性松完成签到 ,获得积分10
2分钟前
点点完成签到 ,获得积分10
2分钟前
Hu完成签到,获得积分20
2分钟前
现实的曼安完成签到 ,获得积分10
3分钟前
chichenglin完成签到 ,获得积分0
3分钟前
OSASACB完成签到 ,获得积分10
3分钟前
Laraineww完成签到 ,获得积分10
3分钟前
刘丰完成签到 ,获得积分10
3分钟前
鹿璟璟完成签到 ,获得积分10
3分钟前
3分钟前
Hao应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628626
求助须知:如何正确求助?哪些是违规求助? 4717900
关于积分的说明 14964650
捐赠科研通 4786466
什么是DOI,文献DOI怎么找? 2555860
邀请新用户注册赠送积分活动 1517014
关于科研通互助平台的介绍 1477700