Exploring the Potential of ChatGPT-4 in Predicting Refractive Surgery Categorizations: Comparative Study

激光矫视 接收机工作特性 分类 人工智能 随机森林 计算机科学 机器学习 医学 医学物理学 验光服务 眼科 角膜
作者
Aleksandar Ćirković,Toam Katz
出处
期刊:JMIR formative research [JMIR Publications Inc.]
卷期号:7: e51798-e51798 被引量:4
标识
DOI:10.2196/51798
摘要

Background Refractive surgery research aims to optimally precategorize patients by their suitability for various types of surgery. Recent advances have led to the development of artificial intelligence–powered algorithms, including machine learning approaches, to assess risks and enhance workflow. Large language models (LLMs) like ChatGPT-4 (OpenAI LP) have emerged as potential general artificial intelligence tools that can assist across various disciplines, possibly including refractive surgery decision-making. However, their actual capabilities in precategorizing refractive surgery patients based on real-world parameters remain unexplored. Objective This exploratory study aimed to validate ChatGPT-4’s capabilities in precategorizing refractive surgery patients based on commonly used clinical parameters. The goal was to assess whether ChatGPT-4’s performance when categorizing batch inputs is comparable to those made by a refractive surgeon. A simple binary set of categories (patient suitable for laser refractive surgery or not) as well as a more detailed set were compared. Methods Data from 100 consecutive patients from a refractive clinic were anonymized and analyzed. Parameters included age, sex, manifest refraction, visual acuity, and various corneal measurements and indices from Scheimpflug imaging. This study compared ChatGPT-4’s performance with a clinician’s categorizations using Cohen κ coefficient, a chi-square test, a confusion matrix, accuracy, precision, recall, F1-score, and receiver operating characteristic area under the curve. Results A statistically significant noncoincidental accordance was found between ChatGPT-4 and the clinician’s categorizations with a Cohen κ coefficient of 0.399 for 6 categories (95% CI 0.256-0.537) and 0.610 for binary categorization (95% CI 0.372-0.792). The model showed temporal instability and response variability, however. The chi-square test on 6 categories indicated an association between the 2 raters’ distributions (χ²5=94.7, P<.001). Here, the accuracy was 0.68, precision 0.75, recall 0.68, and F1-score 0.70. For 2 categories, the accuracy was 0.88, precision 0.88, recall 0.88, F1-score 0.88, and area under the curve 0.79. Conclusions This study revealed that ChatGPT-4 exhibits potential as a precategorization tool in refractive surgery, showing promising agreement with clinician categorizations. However, its main limitations include, among others, dependency on solely one human rater, small sample size, the instability and variability of ChatGPT’s (OpenAI LP) output between iterations and nontransparency of the underlying models. The results encourage further exploration into the application of LLMs like ChatGPT-4 in health care, particularly in decision-making processes that require understanding vast clinical data. Future research should focus on defining the model’s accuracy with prompt and vignette standardization, detecting confounding factors, and comparing to other versions of ChatGPT-4 and other LLMs to pave the way for larger-scale validation and real-world implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenzi完成签到 ,获得积分10
刚刚
俏皮芹完成签到,获得积分10
刚刚
刚刚
you发布了新的文献求助10
刚刚
微光关注了科研通微信公众号
1秒前
1秒前
Sunziy完成签到,获得积分10
2秒前
坨子完成签到,获得积分10
2秒前
不安青牛发布了新的文献求助10
2秒前
梦醒时见你完成签到,获得积分10
2秒前
水水完成签到,获得积分10
3秒前
文静千凡完成签到,获得积分10
3秒前
illusion完成签到,获得积分10
3秒前
聪慧尔白完成签到,获得积分10
4秒前
4秒前
罗山柳完成签到,获得积分10
5秒前
5秒前
666发布了新的文献求助10
5秒前
希望天下0贩的0应助handan采纳,获得10
6秒前
yx_cheng应助Flipped采纳,获得10
6秒前
6秒前
小赵发布了新的文献求助10
6秒前
7秒前
new发布了新的文献求助10
7秒前
季双洋发布了新的文献求助10
7秒前
cincrady完成签到,获得积分10
7秒前
8秒前
传奇3应助BWZ采纳,获得10
8秒前
善学以致用应助哭泣代容采纳,获得10
9秒前
小爱发布了新的文献求助10
9秒前
9秒前
彭于晏应助怡然平萱采纳,获得10
9秒前
wzj发布了新的文献求助10
10秒前
冥冥之极为昭昭应助小赵采纳,获得10
11秒前
开朗访曼应助小赵采纳,获得10
11秒前
yuzhi完成签到,获得积分10
11秒前
俏皮芹发布了新的文献求助10
11秒前
野性的听双完成签到 ,获得积分10
11秒前
cro完成签到,获得积分10
12秒前
是豆豆酱啊完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301