A novel loss function to reproduce texture features for deep learning‐based MRI‐to‐CT synthesis

人工智能 像素 计算机科学 特征(语言学) 深度学习 一致性(知识库) 模式识别(心理学) 再现性 均方误差 一致性 磁共振成像 纹理(宇宙学) 医学 数学 图像(数学) 放射科 统计 哲学 语言学 内科学
作者
Siqi Yuan,Yuxiang Liu,Ran Wei,Ji Zhu,Kuo Men,Jianrong Dai
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 2695-2706 被引量:1
标识
DOI:10.1002/mp.16850
摘要

Studies on computed tomography (CT) synthesis based on magnetic resonance imaging (MRI) have mainly focused on pixel-wise consistency, but the texture features of regions of interest (ROIs) have not received appropriate attention.This study aimed to propose a novel loss function to reproduce texture features of ROIs and pixel-wise consistency for deep learning-based MRI-to-CT synthesis. The method was expected to assist the multi-modality studies for radiomics.The study retrospectively enrolled 127 patients with nasopharyngeal carcinoma. CT and MRI images were collected for each patient, and then rigidly registered as pre-procession. We proposed a gray-level co-occurrence matrix (GLCM)-based loss function to improve the reproducibility of texture features. This novel loss function could be embedded into the present deep learning-based framework for image synthesis. In this study, a typical image synthesis model was selected as the baseline, which contained a Unet trained mean square error (MSE) loss function. We embedded the proposed loss function and designed experiments to supervise different ROIs to prove its effectiveness. The concordance correlation coefficient (CCC) of the GLCM feature was employed to evaluate the reproducibility of GLCM features, which are typical texture features. Besides, we used a publicly available dataset of brain tumors to verify our loss function.Compared with the baseline, the proposed method improved the pixel-wise image quality metrics (MAE: 107.5 to 106.8 HU; SSIM: 0.9728 to 0.9730). CCC values of the GLCM features in GTVnx were significantly improved from 0.78 ± 0.12 to 0.82 ± 0.11 (p < 0.05 for paired t-test). Generally, > 90% (22/24) of the GLCM-based features were improved compared with the baseline, where the Informational Measure of Correlation feature was improved the most (CCC: 0.74 to 0.83). For the public dataset, the loss function also shows its effectiveness. With our proposed loss function added, the ability to reproduce texture features was improved in the ROIs.The proposed method reproduced texture features for MRI-to-CT synthesis, which would benefit radiomics studies based on image multi-modality synthesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大本金完成签到,获得积分10
刚刚
虎福发布了新的文献求助10
1秒前
呵呵哒完成签到,获得积分10
3秒前
子车茗应助www采纳,获得10
3秒前
kangkangkyt完成签到,获得积分10
3秒前
香蕉觅云应助清水采纳,获得10
4秒前
从容芮应助HH采纳,获得10
5秒前
6秒前
6秒前
共享精神应助小小采纳,获得10
7秒前
张张张哈哈哈完成签到,获得积分10
7秒前
switeie发布了新的文献求助20
7秒前
淡定的曼易应助hyy采纳,获得30
7秒前
脑洞疼应助文献啊文献采纳,获得10
8秒前
枫竹轩完成签到,获得积分10
8秒前
orixero应助木通采纳,获得10
8秒前
俊秀的念烟完成签到,获得积分10
9秒前
11秒前
一棵草发布了新的文献求助10
11秒前
沫沫发布了新的文献求助10
12秒前
13秒前
霸气的惜寒完成签到,获得积分10
13秒前
沸点发布了新的文献求助10
14秒前
细腻笑卉完成签到 ,获得积分10
14秒前
从容芮应助张鸿蓉采纳,获得10
14秒前
15秒前
YNN完成签到,获得积分20
15秒前
17秒前
18秒前
上官若男应助小小林柒染采纳,获得10
18秒前
18秒前
年年有余发布了新的文献求助20
19秒前
wanci应助鸡蛋仔采纳,获得30
19秒前
20秒前
稳重的如容完成签到 ,获得积分10
22秒前
caoshisheng发布了新的文献求助10
22秒前
23秒前
自信寄灵发布了新的文献求助10
23秒前
25秒前
木通发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136624
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782625
捐赠科研通 2443718
什么是DOI,文献DOI怎么找? 1299386
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954