Capturing complex hand movements and object interactions using machine learning-powered stretchable smart textile gloves

人工智能 计算机科学 计算机视觉 机器人学 稳健性(进化) 人机交互 机器人 生物化学 化学 基因
作者
Arvin Tashakori,Zenan Jiang,Amir Servati,S. Soltanian,Harishkumar Narayana,Katherine Le,Caroline Nakayama,Chieh-ling Yang,Z. Jane Wang,Janice J. Eng,Peyman Servati
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:6 (1): 106-118 被引量:74
标识
DOI:10.1038/s42256-023-00780-9
摘要

Accurate real-time tracking of dexterous hand movements has numerous applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging because of the large number of articulations and degrees of freedom. Here we report accurate and dynamic tracking of articulated hand and finger movements using stretchable, washable smart gloves with embedded helical sensor yarns and inertial measurement units. The sensor yarns have a high dynamic range, responding to strains as low as 0.005% and as high as 155%, and show stability during extensive use and washing cycles. We use multi-stage machine learning to report average joint-angle estimation root mean square errors of 1.21° and 1.45° for intra- and inter-participant cross-validation, respectively, matching the accuracy of costly motion-capture cameras without occlusion or field-of-view limitations. We report a data augmentation technique that enhances robustness to noise and variations of sensors. We demonstrate accurate tracking of dexterous hand movements during object interactions, opening new avenues of applications, including accurate typing on a mock paper keyboard, recognition of complex dynamic and static gestures adapted from American Sign Language, and object identification. Accurate real-time tracking of dexterous hand movements and interactions has applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging due to the large number of articulations and degrees of freedom. Tashakori and colleagues report accurate and dynamic tracking of articulated hand and finger movements using machine-learning powered stretchable, washable smart gloves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
enen发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
zzk发布了新的文献求助10
1秒前
lock821发布了新的文献求助10
1秒前
Orange应助hujunqiu采纳,获得10
2秒前
2秒前
2秒前
dudu完成签到,获得积分10
3秒前
3秒前
历史真相完成签到,获得积分10
3秒前
西波磕拉底完成签到,获得积分10
3秒前
科研通AI6应助瘦瘦安梦采纳,获得10
4秒前
kk发布了新的文献求助10
4秒前
呆萌念云完成签到 ,获得积分10
4秒前
清新发布了新的文献求助10
4秒前
金枪鱼完成签到,获得积分10
5秒前
5秒前
5秒前
yeyeye应助奔奔采纳,获得10
6秒前
罗兴鲜发布了新的文献求助10
6秒前
p454q完成签到 ,获得积分10
6秒前
刘钱美子完成签到,获得积分10
6秒前
7秒前
hututu完成签到,获得积分10
7秒前
SciGPT应助田乐天采纳,获得10
8秒前
英勇的雁发布了新的文献求助10
8秒前
大肥羊发布了新的文献求助10
8秒前
勤劳的蓝完成签到,获得积分10
8秒前
8秒前
毕业毕业完成签到,获得积分20
9秒前
完美世界应助平常星星采纳,获得10
9秒前
9秒前
cos发布了新的文献求助10
9秒前
Camus完成签到,获得积分10
9秒前
10秒前
Jessieliao发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396591
求助须知:如何正确求助?哪些是违规求助? 4516960
关于积分的说明 14061977
捐赠科研通 4428852
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424542
关于科研通互助平台的介绍 1403644