Capturing complex hand movements and object interactions using machine learning-powered stretchable smart textile gloves

人工智能 计算机科学 计算机视觉 机器人学 稳健性(进化) 人机交互 机器人 生物化学 化学 基因
作者
Arvin Tashakori,Zenan Jiang,Amir Servati,S. Soltanian,Harishkumar Narayana,Katherine Le,Caroline Nakayama,Chieh-ling Yang,Z. Jane Wang,Janice J. Eng,Peyman Servati
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:6 (1): 106-118 被引量:44
标识
DOI:10.1038/s42256-023-00780-9
摘要

Accurate real-time tracking of dexterous hand movements has numerous applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging because of the large number of articulations and degrees of freedom. Here we report accurate and dynamic tracking of articulated hand and finger movements using stretchable, washable smart gloves with embedded helical sensor yarns and inertial measurement units. The sensor yarns have a high dynamic range, responding to strains as low as 0.005% and as high as 155%, and show stability during extensive use and washing cycles. We use multi-stage machine learning to report average joint-angle estimation root mean square errors of 1.21° and 1.45° for intra- and inter-participant cross-validation, respectively, matching the accuracy of costly motion-capture cameras without occlusion or field-of-view limitations. We report a data augmentation technique that enhances robustness to noise and variations of sensors. We demonstrate accurate tracking of dexterous hand movements during object interactions, opening new avenues of applications, including accurate typing on a mock paper keyboard, recognition of complex dynamic and static gestures adapted from American Sign Language, and object identification. Accurate real-time tracking of dexterous hand movements and interactions has applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging due to the large number of articulations and degrees of freedom. Tashakori and colleagues report accurate and dynamic tracking of articulated hand and finger movements using machine-learning powered stretchable, washable smart gloves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
伊斯坦布尔的鱼完成签到,获得积分10
2秒前
3秒前
Zoe发布了新的文献求助10
3秒前
3秒前
贺贺完成签到,获得积分10
3秒前
红烧胖大海完成签到,获得积分10
4秒前
SciGPT应助Steven采纳,获得10
4秒前
zz完成签到,获得积分10
6秒前
yxy完成签到,获得积分10
6秒前
VVV完成签到,获得积分10
7秒前
Coral完成签到,获得积分10
7秒前
愉快猫咪发布了新的文献求助10
8秒前
8秒前
Q华发布了新的文献求助10
8秒前
fofu完成签到,获得积分10
9秒前
岗岗完成签到,获得积分10
9秒前
冷静的小虾米完成签到 ,获得积分10
10秒前
11秒前
12A完成签到,获得积分10
11秒前
12秒前
凌寻冬完成签到,获得积分10
13秒前
NMZN完成签到,获得积分10
13秒前
叮当发布了新的文献求助10
14秒前
14秒前
SYLH应助优美的明辉采纳,获得10
15秒前
鱼会淹死吗应助Q华采纳,获得10
15秒前
李爱国应助Q华采纳,获得10
15秒前
ybk完成签到,获得积分10
16秒前
xiaodiandian完成签到,获得积分10
16秒前
SilverPlane发布了新的文献求助10
17秒前
胡说八道完成签到 ,获得积分10
17秒前
桃掉烦恼完成签到,获得积分10
18秒前
徐徐发布了新的文献求助10
20秒前
愉快猫咪完成签到,获得积分10
20秒前
杨志坚完成签到 ,获得积分10
21秒前
阿里嘎多发布了新的文献求助10
25秒前
LiuShenglan完成签到,获得积分10
26秒前
CAOHOU应助优美的明辉采纳,获得10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963468
求助须知:如何正确求助?哪些是违规求助? 3509260
关于积分的说明 11145830
捐赠科研通 3242518
什么是DOI,文献DOI怎么找? 1791937
邀请新用户注册赠送积分活动 873242
科研通“疑难数据库(出版商)”最低求助积分说明 803675