Capturing complex hand movements and object interactions using machine learning-powered stretchable smart textile gloves

人工智能 计算机科学 计算机视觉 机器人学 稳健性(进化) 人机交互 机器人 生物化学 基因 化学
作者
Arvin Tashakori,Zenan Jiang,Amir Servati,S. Soltanian,Harishkumar Narayana,Katherine Le,Caroline Nakayama,Chieh-ling Yang,Z. Jane Wang,Janice J. Eng,Peyman Servati
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:6 (1): 106-118 被引量:35
标识
DOI:10.1038/s42256-023-00780-9
摘要

Accurate real-time tracking of dexterous hand movements has numerous applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging because of the large number of articulations and degrees of freedom. Here we report accurate and dynamic tracking of articulated hand and finger movements using stretchable, washable smart gloves with embedded helical sensor yarns and inertial measurement units. The sensor yarns have a high dynamic range, responding to strains as low as 0.005% and as high as 155%, and show stability during extensive use and washing cycles. We use multi-stage machine learning to report average joint-angle estimation root mean square errors of 1.21° and 1.45° for intra- and inter-participant cross-validation, respectively, matching the accuracy of costly motion-capture cameras without occlusion or field-of-view limitations. We report a data augmentation technique that enhances robustness to noise and variations of sensors. We demonstrate accurate tracking of dexterous hand movements during object interactions, opening new avenues of applications, including accurate typing on a mock paper keyboard, recognition of complex dynamic and static gestures adapted from American Sign Language, and object identification. Accurate real-time tracking of dexterous hand movements and interactions has applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging due to the large number of articulations and degrees of freedom. Tashakori and colleagues report accurate and dynamic tracking of articulated hand and finger movements using machine-learning powered stretchable, washable smart gloves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fightingwu发布了新的文献求助10
1秒前
无私小小完成签到,获得积分10
1秒前
风中尔云发布了新的文献求助10
1秒前
2秒前
向雫完成签到,获得积分10
2秒前
Ray发布了新的文献求助10
3秒前
SciGPT应助shuangcheng采纳,获得10
4秒前
sophia完成签到 ,获得积分10
4秒前
赘婿应助一个小胖子采纳,获得10
6秒前
JamesPei应助徐凤梨采纳,获得10
8秒前
科研小白完成签到,获得积分10
8秒前
ljs发布了新的文献求助10
8秒前
Orange应助fightingwu采纳,获得30
9秒前
10秒前
11秒前
科研蚂蚁完成签到,获得积分10
12秒前
13秒前
小马甲应助Jane采纳,获得10
14秒前
14秒前
宋宋发布了新的文献求助10
14秒前
我是老大应助酷炫的皮带采纳,获得10
14秒前
隐形曼青应助朴实流沙采纳,获得10
15秒前
研友_VZG7GZ应助聪慧沛萍采纳,获得10
15秒前
16秒前
moon完成签到,获得积分10
17秒前
科研通AI5应助魏士博采纳,获得10
18秒前
向雫发布了新的文献求助10
18秒前
科研通AI5应助不能随便采纳,获得10
18秒前
19秒前
20秒前
爆米花应助程程采纳,获得10
21秒前
missinglotta发布了新的文献求助10
21秒前
科目三应助苏公子采纳,获得10
21秒前
QWJ完成签到,获得积分10
21秒前
溪边最好的小树完成签到,获得积分10
22秒前
22秒前
刘一三完成签到 ,获得积分10
22秒前
22秒前
22秒前
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730337
求助须知:如何正确求助?哪些是违规求助? 3275096
关于积分的说明 9991049
捐赠科研通 2990706
什么是DOI,文献DOI怎么找? 1641231
邀请新用户注册赠送积分活动 779610
科研通“疑难数据库(出版商)”最低求助积分说明 748331