Capturing complex hand movements and object interactions using machine learning-powered stretchable smart textile gloves

人工智能 计算机科学 计算机视觉 机器人学 稳健性(进化) 人机交互 机器人 生物化学 基因 化学
作者
Arvin Tashakori,Zenan Jiang,Amir Servati,Saeid Soltanian,Harishkumar Narayana,Katherine Le,Caroline Nakayama,Chieh-ling Yang,Z. Jane Wang,Janice J. Eng,Peyman Servati
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:6 (1): 106-118 被引量:15
标识
DOI:10.1038/s42256-023-00780-9
摘要

Accurate real-time tracking of dexterous hand movements has numerous applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging because of the large number of articulations and degrees of freedom. Here we report accurate and dynamic tracking of articulated hand and finger movements using stretchable, washable smart gloves with embedded helical sensor yarns and inertial measurement units. The sensor yarns have a high dynamic range, responding to strains as low as 0.005% and as high as 155%, and show stability during extensive use and washing cycles. We use multi-stage machine learning to report average joint-angle estimation root mean square errors of 1.21° and 1.45° for intra- and inter-participant cross-validation, respectively, matching the accuracy of costly motion-capture cameras without occlusion or field-of-view limitations. We report a data augmentation technique that enhances robustness to noise and variations of sensors. We demonstrate accurate tracking of dexterous hand movements during object interactions, opening new avenues of applications, including accurate typing on a mock paper keyboard, recognition of complex dynamic and static gestures adapted from American Sign Language, and object identification. Accurate real-time tracking of dexterous hand movements and interactions has applications in human–computer interaction, the metaverse, robotics and tele-health. Capturing realistic hand movements is challenging due to the large number of articulations and degrees of freedom. Tashakori and colleagues report accurate and dynamic tracking of articulated hand and finger movements using machine-learning powered stretchable, washable smart gloves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助宋致力采纳,获得10
刚刚
1秒前
1秒前
Owen应助刘唐荣采纳,获得10
2秒前
喜东东发布了新的文献求助30
2秒前
搜集达人应助勇往直前采纳,获得10
3秒前
没影子的人完成签到,获得积分20
3秒前
ant完成签到,获得积分10
4秒前
5秒前
nickel发布了新的文献求助20
5秒前
wang完成签到,获得积分10
5秒前
6秒前
啦啦啦完成签到 ,获得积分10
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
7秒前
盒子应助科研通管家采纳,获得10
7秒前
7秒前
丘比特应助科研通管家采纳,获得30
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
7秒前
慕青应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
吉祥应助科研通管家采纳,获得20
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
l玖应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
周芷卉发布了新的文献求助10
8秒前
复杂的雪巧完成签到,获得积分10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得20
8秒前
华仔应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
Singularity应助科研通管家采纳,获得20
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
吉祥应助科研通管家采纳,获得20
8秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140831
求助须知:如何正确求助?哪些是违规求助? 2791790
关于积分的说明 7800310
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302350
科研通“疑难数据库(出版商)”最低求助积分说明 626516
版权声明 601210