Discriminative multi-label feature selection with adaptive graph diffusion

判别式 人工智能 特征选择 模式识别(心理学) 计算机科学 图形 特征学习 降维 子空间拓扑 特征(语言学) 嵌入 机器学习 理论计算机科学 哲学 语言学
作者
Jiajun Ma,Fei Xu,Xiaofeng Rong
出处
期刊:Pattern Recognition [Elsevier]
卷期号:148: 110154-110154 被引量:15
标识
DOI:10.1016/j.patcog.2023.110154
摘要

Feature selection can alleviate the problem of the curse of dimensionality by selecting more discriminative features, which plays an important role in multi-label learning. Recently, embedded feature selection methods have received increasing attentions. However, most existing methods learn the low-dimensional embeddings under the guidance of the local structure between the original instance pairs, thereby ignoring the high-order structure between instances and being sensitive to noise in the original features. To address these issues, we propose a feature selection method named discriminative multi-label feature selection with adaptive graph diffusion (MFS-AGD). Specifically, we first construct a graph embedding learning framework equipped with adaptive graph diffusion to uncover a latent subspace that preserves the higher-order structure information between four tuples. Then, the Hilbert–Schmidt independence criterion (HSIC) is incorporated into the embedding learning framework to ensure the maximum dependency between the latent representation and labels. Benefiting from the interactive optimization of the feature selection matrix, latent representation and similarity graph, the selected features can accurately explore the higher-order structural and supervised information of data. By further considering the correlation between labels, MFS-AG is extended to a more discriminative version,i.e., LMFS-AG. Extensive experimental results on various benchmark data sets validate the advantages of the proposed MFS-AGD and LMFS-AGD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KHZhang发布了新的文献求助10
刚刚
迷路的涑发布了新的文献求助10
1秒前
Zr完成签到,获得积分10
2秒前
3秒前
云海发布了新的文献求助10
4秒前
8R60d8应助jack_kunn采纳,获得10
5秒前
着急的晓刚完成签到,获得积分10
5秒前
6秒前
CZJ完成签到,获得积分10
7秒前
Jeannie发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
szc完成签到,获得积分10
13秒前
13秒前
14秒前
16秒前
冷静乌发布了新的文献求助10
17秒前
18秒前
zzy发布了新的文献求助10
18秒前
19秒前
19秒前
19秒前
20秒前
wanci应助小点点采纳,获得10
21秒前
鱼咬羊发布了新的文献求助10
22秒前
xuaotian发布了新的文献求助10
23秒前
羅卜貳发布了新的文献求助100
23秒前
Ali发布了新的文献求助30
24秒前
zzy完成签到,获得积分10
25秒前
沸腾鱼健康完成签到,获得积分10
25秒前
Mlh完成签到,获得积分10
26秒前
游园惊梦完成签到 ,获得积分10
29秒前
土豆丝完成签到,获得积分10
29秒前
30秒前
hwzhou10完成签到,获得积分10
31秒前
冷静乌完成签到,获得积分10
31秒前
搜集达人应助张宝采纳,获得10
32秒前
32秒前
大个应助青栀采纳,获得10
33秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164351
求助须知:如何正确求助?哪些是违规求助? 2815193
关于积分的说明 7908079
捐赠科研通 2474802
什么是DOI,文献DOI怎么找? 1317676
科研通“疑难数据库(出版商)”最低求助积分说明 631925
版权声明 602234