亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Discriminative multi-label feature selection with adaptive graph diffusion

判别式 人工智能 特征选择 模式识别(心理学) 计算机科学 图形 特征学习 降维 子空间拓扑 特征(语言学) 嵌入 机器学习 理论计算机科学 哲学 语言学
作者
Jiajun Ma,Fei Xu,Xiaofeng Rong
出处
期刊:Pattern Recognition [Elsevier]
卷期号:148: 110154-110154 被引量:20
标识
DOI:10.1016/j.patcog.2023.110154
摘要

Feature selection can alleviate the problem of the curse of dimensionality by selecting more discriminative features, which plays an important role in multi-label learning. Recently, embedded feature selection methods have received increasing attentions. However, most existing methods learn the low-dimensional embeddings under the guidance of the local structure between the original instance pairs, thereby ignoring the high-order structure between instances and being sensitive to noise in the original features. To address these issues, we propose a feature selection method named discriminative multi-label feature selection with adaptive graph diffusion (MFS-AGD). Specifically, we first construct a graph embedding learning framework equipped with adaptive graph diffusion to uncover a latent subspace that preserves the higher-order structure information between four tuples. Then, the Hilbert–Schmidt independence criterion (HSIC) is incorporated into the embedding learning framework to ensure the maximum dependency between the latent representation and labels. Benefiting from the interactive optimization of the feature selection matrix, latent representation and similarity graph, the selected features can accurately explore the higher-order structural and supervised information of data. By further considering the correlation between labels, MFS-AG is extended to a more discriminative version,i.e., LMFS-AG. Extensive experimental results on various benchmark data sets validate the advantages of the proposed MFS-AGD and LMFS-AGD methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
kale123完成签到,获得积分20
10秒前
gexzygg应助Li采纳,获得10
17秒前
38秒前
gexzygg应助科研通管家采纳,获得10
53秒前
gexzygg应助科研通管家采纳,获得10
53秒前
gexzygg应助科研通管家采纳,获得10
53秒前
gexzygg应助科研通管家采纳,获得10
54秒前
1分钟前
1分钟前
jasonwee发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Jasper应助单薄水星采纳,获得10
1分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
gexzygg应助科研通管家采纳,获得10
2分钟前
2分钟前
Gryff完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
zxcvvbb1001完成签到 ,获得积分10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
gexzygg应助科研通管家采纳,获得10
4分钟前
Shandongdaxiu完成签到 ,获得积分10
5分钟前
Owen应助安贝的呐喊采纳,获得10
5分钟前
PHD满完成签到,获得积分10
5分钟前
5分钟前
5分钟前
jyy发布了新的文献求助200
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634876
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512