Discriminative multi-label feature selection with adaptive graph diffusion

判别式 人工智能 特征选择 模式识别(心理学) 计算机科学 图形 特征学习 降维 子空间拓扑 特征(语言学) 嵌入 机器学习 理论计算机科学 哲学 语言学
作者
Jiajun Ma,Fei Xu,Xiaofeng Rong
出处
期刊:Pattern Recognition [Elsevier]
卷期号:148: 110154-110154 被引量:20
标识
DOI:10.1016/j.patcog.2023.110154
摘要

Feature selection can alleviate the problem of the curse of dimensionality by selecting more discriminative features, which plays an important role in multi-label learning. Recently, embedded feature selection methods have received increasing attentions. However, most existing methods learn the low-dimensional embeddings under the guidance of the local structure between the original instance pairs, thereby ignoring the high-order structure between instances and being sensitive to noise in the original features. To address these issues, we propose a feature selection method named discriminative multi-label feature selection with adaptive graph diffusion (MFS-AGD). Specifically, we first construct a graph embedding learning framework equipped with adaptive graph diffusion to uncover a latent subspace that preserves the higher-order structure information between four tuples. Then, the Hilbert–Schmidt independence criterion (HSIC) is incorporated into the embedding learning framework to ensure the maximum dependency between the latent representation and labels. Benefiting from the interactive optimization of the feature selection matrix, latent representation and similarity graph, the selected features can accurately explore the higher-order structural and supervised information of data. By further considering the correlation between labels, MFS-AG is extended to a more discriminative version,i.e., LMFS-AG. Extensive experimental results on various benchmark data sets validate the advantages of the proposed MFS-AGD and LMFS-AGD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
htht完成签到,获得积分20
1秒前
slgzhangtao完成签到,获得积分10
1秒前
帅玉玉发布了新的文献求助10
1秒前
满意花生发布了新的文献求助10
2秒前
www123qe发布了新的文献求助10
3秒前
酷波er应助灵巧汉堡采纳,获得10
3秒前
在下想发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助汤圆呢醒醒采纳,获得30
4秒前
5秒前
5秒前
5秒前
清爽的乐曲完成签到,获得积分10
5秒前
独自人生完成签到,获得积分10
6秒前
科研通AI6应助积极的夏天采纳,获得10
7秒前
Silieze完成签到,获得积分10
7秒前
可爱的函函应助112采纳,获得10
8秒前
8秒前
核动力驴发布了新的文献求助10
9秒前
Fabio发布了新的文献求助10
9秒前
plmojn发布了新的文献求助10
10秒前
jing完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
JAY完成签到,获得积分10
13秒前
原本山川完成签到,获得积分10
15秒前
归宁完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
肚子好e啊完成签到,获得积分10
17秒前
勿忘心安发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
112完成签到,获得积分20
18秒前
文静冷梅发布了新的文献求助20
19秒前
意面米助完成签到,获得积分10
19秒前
万能图书馆应助Spaz采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997