Discriminative multi-label feature selection with adaptive graph diffusion

判别式 人工智能 特征选择 模式识别(心理学) 计算机科学 图形 特征学习 降维 子空间拓扑 特征(语言学) 嵌入 机器学习 理论计算机科学 语言学 哲学
作者
Jiajun Ma,Fei Xu,Xiaofeng Rong
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:148: 110154-110154 被引量:18
标识
DOI:10.1016/j.patcog.2023.110154
摘要

Feature selection can alleviate the problem of the curse of dimensionality by selecting more discriminative features, which plays an important role in multi-label learning. Recently, embedded feature selection methods have received increasing attentions. However, most existing methods learn the low-dimensional embeddings under the guidance of the local structure between the original instance pairs, thereby ignoring the high-order structure between instances and being sensitive to noise in the original features. To address these issues, we propose a feature selection method named discriminative multi-label feature selection with adaptive graph diffusion (MFS-AGD). Specifically, we first construct a graph embedding learning framework equipped with adaptive graph diffusion to uncover a latent subspace that preserves the higher-order structure information between four tuples. Then, the Hilbert–Schmidt independence criterion (HSIC) is incorporated into the embedding learning framework to ensure the maximum dependency between the latent representation and labels. Benefiting from the interactive optimization of the feature selection matrix, latent representation and similarity graph, the selected features can accurately explore the higher-order structural and supervised information of data. By further considering the correlation between labels, MFS-AG is extended to a more discriminative version,i.e., LMFS-AG. Extensive experimental results on various benchmark data sets validate the advantages of the proposed MFS-AGD and LMFS-AGD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮幻莲发布了新的文献求助10
刚刚
美丽晓蓝完成签到,获得积分10
刚刚
热心书易完成签到,获得积分10
1秒前
柔弱紊发布了新的文献求助10
2秒前
务实青亦发布了新的文献求助10
2秒前
科研通AI5应助轻松幼丝采纳,获得10
2秒前
王佳迅发布了新的文献求助10
3秒前
4秒前
打打应助美丽晓蓝采纳,获得10
6秒前
6秒前
7秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得30
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研小虫应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
10秒前
李健应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
854fycchjh发布了新的文献求助30
10秒前
10秒前
10秒前
无花果应助科研通管家采纳,获得10
10秒前
春江完成签到,获得积分10
10秒前
糖果苏扬给糖果苏扬的求助进行了留言
10秒前
13秒前
七月发布了新的文献求助10
13秒前
13秒前
ceeray23应助冷傲的无剑采纳,获得10
16秒前
16秒前
邻苯二甲酸二辛酯完成签到,获得积分20
17秒前
小洁完成签到 ,获得积分10
18秒前
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792