Discriminative multi-label feature selection with adaptive graph diffusion

判别式 人工智能 特征选择 模式识别(心理学) 计算机科学 图形 特征学习 降维 子空间拓扑 特征(语言学) 嵌入 机器学习 理论计算机科学 哲学 语言学
作者
Jiajun Ma,Fei Xu,Xiaofeng Rong
出处
期刊:Pattern Recognition [Elsevier]
卷期号:148: 110154-110154 被引量:20
标识
DOI:10.1016/j.patcog.2023.110154
摘要

Feature selection can alleviate the problem of the curse of dimensionality by selecting more discriminative features, which plays an important role in multi-label learning. Recently, embedded feature selection methods have received increasing attentions. However, most existing methods learn the low-dimensional embeddings under the guidance of the local structure between the original instance pairs, thereby ignoring the high-order structure between instances and being sensitive to noise in the original features. To address these issues, we propose a feature selection method named discriminative multi-label feature selection with adaptive graph diffusion (MFS-AGD). Specifically, we first construct a graph embedding learning framework equipped with adaptive graph diffusion to uncover a latent subspace that preserves the higher-order structure information between four tuples. Then, the Hilbert–Schmidt independence criterion (HSIC) is incorporated into the embedding learning framework to ensure the maximum dependency between the latent representation and labels. Benefiting from the interactive optimization of the feature selection matrix, latent representation and similarity graph, the selected features can accurately explore the higher-order structural and supervised information of data. By further considering the correlation between labels, MFS-AG is extended to a more discriminative version,i.e., LMFS-AG. Extensive experimental results on various benchmark data sets validate the advantages of the proposed MFS-AGD and LMFS-AGD methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulu发布了新的文献求助30
1秒前
江桥zy完成签到,获得积分10
1秒前
不爱吃雪糕应助小兵采纳,获得10
2秒前
JamesPei应助九湖夷上采纳,获得10
2秒前
战战兢兢的失眠完成签到 ,获得积分10
3秒前
caicai完成签到,获得积分10
3秒前
Adam_Lan发布了新的文献求助10
4秒前
4秒前
迷路雨寒应助卤猪蹄采纳,获得10
5秒前
暴躁的芷巧完成签到,获得积分10
5秒前
5秒前
Young完成签到,获得积分10
5秒前
6秒前
星辰大海应助简单的乐驹采纳,获得10
6秒前
7秒前
嘿嘿啊哈给嘿嘿啊哈的求助进行了留言
7秒前
酷炫的不二完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
xh93完成签到,获得积分20
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
专注的棉花糖完成签到,获得积分10
10秒前
蓝天应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
Return应助科研通管家采纳,获得10
11秒前
Mic应助科研通管家采纳,获得10
11秒前
纯情的浩然完成签到,获得积分10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
Mic应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695061
求助须知:如何正确求助?哪些是违规求助? 5099914
关于积分的说明 15215127
捐赠科研通 4851509
什么是DOI,文献DOI怎么找? 2602393
邀请新用户注册赠送积分活动 1554207
关于科研通互助平台的介绍 1512167