Discriminative multi-label feature selection with adaptive graph diffusion

判别式 人工智能 特征选择 模式识别(心理学) 计算机科学 图形 特征学习 降维 子空间拓扑 特征(语言学) 嵌入 机器学习 理论计算机科学 语言学 哲学
作者
Jiajun Ma,Fei Xu,Xiaofeng Rong
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:148: 110154-110154 被引量:20
标识
DOI:10.1016/j.patcog.2023.110154
摘要

Feature selection can alleviate the problem of the curse of dimensionality by selecting more discriminative features, which plays an important role in multi-label learning. Recently, embedded feature selection methods have received increasing attentions. However, most existing methods learn the low-dimensional embeddings under the guidance of the local structure between the original instance pairs, thereby ignoring the high-order structure between instances and being sensitive to noise in the original features. To address these issues, we propose a feature selection method named discriminative multi-label feature selection with adaptive graph diffusion (MFS-AGD). Specifically, we first construct a graph embedding learning framework equipped with adaptive graph diffusion to uncover a latent subspace that preserves the higher-order structure information between four tuples. Then, the Hilbert–Schmidt independence criterion (HSIC) is incorporated into the embedding learning framework to ensure the maximum dependency between the latent representation and labels. Benefiting from the interactive optimization of the feature selection matrix, latent representation and similarity graph, the selected features can accurately explore the higher-order structural and supervised information of data. By further considering the correlation between labels, MFS-AG is extended to a more discriminative version,i.e., LMFS-AG. Extensive experimental results on various benchmark data sets validate the advantages of the proposed MFS-AGD and LMFS-AGD methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱芷容发布了新的文献求助10
刚刚
lwl完成签到,获得积分10
1秒前
时闲应助哈哈哈哈哈哈采纳,获得10
1秒前
段仁杰完成签到,获得积分10
1秒前
slayers应助淡然绝山采纳,获得10
1秒前
cs发布了新的文献求助10
1秒前
老迟到的友容完成签到,获得积分20
1秒前
1秒前
2秒前
2秒前
ZHOUCHENG完成签到,获得积分0
2秒前
2秒前
汉堡包应助歡禧采纳,获得10
3秒前
JoshuaChen发布了新的文献求助10
3秒前
3秒前
3秒前
isaac完成签到,获得积分10
5秒前
清秀涵易发布了新的文献求助10
5秒前
6秒前
6秒前
luoluo完成签到 ,获得积分10
6秒前
灵巧代柔完成签到,获得积分10
6秒前
7秒前
呆萌鱼完成签到,获得积分10
7秒前
121234发布了新的文献求助10
7秒前
7秒前
CipherSage应助nzxnzx采纳,获得10
7秒前
炸虾仁完成签到 ,获得积分10
8秒前
越红完成签到,获得积分10
8秒前
杰杰发布了新的文献求助10
9秒前
圆锥香蕉举报包钰韬求助涉嫌违规
9秒前
南迦完成签到,获得积分10
9秒前
NexusExplorer应助Liens采纳,获得10
9秒前
笨笨翰完成签到,获得积分10
9秒前
10秒前
kecheng应助荔枝采纳,获得10
10秒前
苯环完成签到,获得积分10
10秒前
屿若完成签到 ,获得积分10
10秒前
lv发布了新的文献求助10
10秒前
zhuang完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650