Technological innovation and its influence on energy risk management: Unpacking China’s energy consumption structure optimisation amidst climate change

拆箱 能源消耗 消费(社会学) 气候变化 中国 能量(信号处理) 经济 自然资源经济学 技术变革 环境经济学 业务 工程类 地理 社会学 社会科学 宏观经济学 生态学 数学 考古 哲学 电气工程 统计 生物 语言学
作者
Dongyang Zhang,Mengjiao Zhao,Yizhi Wang,Samuel A. Vigne,Ramzi Benkraiem
出处
期刊:Energy Economics [Elsevier]
卷期号:131: 107321-107321 被引量:13
标识
DOI:10.1016/j.eneco.2024.107321
摘要

In the context of intensifying climate challenges, adept energy risk management is more pertinent than ever. This research pioneers an in-depth exploration into China's pronounced reliance on high-polluting fossil fuels, utilising a decade's worth of provincial data (2010–2020) to shed light on the intricate dynamics between technological innovation and energy consumption structure refinement. Notably, our findings unveil that technological advancements act as catalysts in streamlining energy consumption structures, serving as a bulwark against emergent climate-related risks. Yet, this positive trajectory is not immune to disruptions: volatility in crude oil futures prices has the potential to dampen these benefits, ushering in heightened financial risks. Our work further underscores pronounced regional variances; technological innovation yields diminished returns in the central and western regions compared to their eastern counterparts. An intriguing observation is the resilience exhibited by coal-dependent provinces to technological evolution, pointing towards entrenched energy infrastructure challenges. Crucially, this study is among the first to identify the dual roles of industrial structure evolution and energy pricing dynamics as mediators in energy risk management. Drawing from these insights, we advocate for a proactive harnessing of technological innovation, not merely as a tool, but as an imperative to drive China's energy transformation, foster sustainable consumption, and lay the foundation for a fortified green and low-carbon technological ecosystem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助guantlv采纳,获得10
刚刚
4秒前
8秒前
orixero应助aniu采纳,获得10
8秒前
9秒前
10秒前
10秒前
11秒前
13秒前
soberwind完成签到,获得积分10
13秒前
15秒前
赘婿应助111采纳,获得10
15秒前
谨慎发布了新的文献求助10
16秒前
momo完成签到,获得积分10
17秒前
18秒前
柯柯发布了新的文献求助10
18秒前
19秒前
柔弱雅香完成签到,获得积分20
20秒前
22秒前
hhh完成签到,获得积分10
22秒前
Echo725完成签到,获得积分10
24秒前
24秒前
25秒前
科研小白发布了新的文献求助30
26秒前
26秒前
麻附细发布了新的文献求助10
27秒前
aniu发布了新的文献求助10
28秒前
飞翔的霸天哥应助优雅狗采纳,获得30
31秒前
TRTHHRTZ应助冷帅采纳,获得30
32秒前
柔弱雅香发布了新的文献求助10
32秒前
xieyuanlong发布了新的文献求助10
33秒前
uniphoton发布了新的文献求助10
35秒前
38秒前
Esther完成签到 ,获得积分20
38秒前
39秒前
39秒前
700w完成签到 ,获得积分0
41秒前
大个应助柯柯采纳,获得10
41秒前
guantlv发布了新的文献求助10
42秒前
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136127
求助须知:如何正确求助?哪些是违规求助? 2787029
关于积分的说明 7780244
捐赠科研通 2443154
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870