Physics-Informed Fully Convolutional Networks for Forward Prediction of Temperature Field and Inverse Estimation of Thermal Diffusivity

热扩散率 领域(数学) 反向 估计 热的 反问题 卷积神经网络 统计物理学 物理 人工智能 算法 计算机科学 数学 工程类 气象学 数学分析 热力学 系统工程 几何学 纯数学
作者
Tong Zhu,Qiye Zheng,Yanglong Lu
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (11) 被引量:6
标识
DOI:10.1115/1.4064555
摘要

Abstract Physics-informed neural networks (PINNs) are a novel approach to solving partial differential equations (PDEs) through deep learning. They offer a unified manner for solving forward and inverse problems, which is beneficial for various engineering problems, including heat transfer analysis. However, traditional PINNs suffer from low accuracy and efficiency due to the fully-connected neural network framework and the method to incorporate physical laws. In this paper, a novel physics-informed learning architecture, named physics-informed fully convolutional networks (PIFCNs), is developed to simultaneously solve forward and inverse problems in thermal conduction. The use of fully convolutional networks (FCNs) significantly reduces the density of connections. Thus, the computational cost is reduced. With the advantage of the nodal-level match between inputs and outputs in FCNs, the output solution can be used directly to formulate discretized PDEs via a finite difference method, which is more accurate and efficient than the traditional approach in PINNs. The results demonstrate that PIFCNs can flexibly implement Dirichlet and Neumann boundary conditions to predict temperature distribution. Remarkably, PIFCNs can also estimate unknown thermal diffusivity with an accuracy exceeding 99%, even with incomplete boundaries and limited sampling data. The results obtained from PIFCNs outperform those obtained from PINNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助miao采纳,获得20
刚刚
欧阳蛋蛋鸡完成签到,获得积分10
刚刚
ZJPPPP发布了新的文献求助10
刚刚
cij123完成签到,获得积分10
刚刚
独特的忆彤完成签到 ,获得积分10
1秒前
mc关闭了mc文献求助
1秒前
leisure应助科研通管家采纳,获得10
1秒前
VDC应助科研通管家采纳,获得30
1秒前
liuaoo发布了新的文献求助10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
小青椒应助科研通管家采纳,获得10
2秒前
求助人员应助科研通管家采纳,获得10
2秒前
2秒前
大模型应助科研通管家采纳,获得10
2秒前
自由寄柔发布了新的文献求助30
2秒前
wills应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
Jasper应助蕾蕾大酱采纳,获得10
3秒前
李健的粉丝团团长应助周_采纳,获得10
3秒前
独特听芹完成签到,获得积分10
3秒前
Tan完成签到 ,获得积分10
3秒前
4秒前
5秒前
123发布了新的文献求助10
5秒前
华青ww完成签到,获得积分10
5秒前
王晓朋完成签到,获得积分10
5秒前
agd122完成签到,获得积分10
6秒前
6秒前
喝到几点完成签到,获得积分10
6秒前
英姑应助dd采纳,获得10
6秒前
邹万恶完成签到,获得积分10
6秒前
善学以致用应助苏silence采纳,获得10
6秒前
简单半邪完成签到,获得积分10
6秒前
库凯伊完成签到,获得积分10
7秒前
8秒前
piggybunny发布了新的文献求助10
8秒前
无情的踏歌完成签到,获得积分10
8秒前
深海鳕鱼完成签到,获得积分10
9秒前
9秒前
zz完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006