Global disentangled graph convolutional neural network based on a graph topological metric

计算机科学 理论计算机科学 图形 拓扑图论 特征学习 潜变量 公制(单位) 卷积神经网络 图形属性 数据挖掘 机器学习 电压图 折线图 运营管理 经济
作者
Wenzhen Liu,Guoqiang Zhou,Xiaoyu Mao,Shu‐Di Bao,Haoran Li,Jiahua Shi,Huaming Chen,Jun Shen,Yuanming Huang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:284: 111283-111283 被引量:1
标识
DOI:10.1016/j.knosys.2023.111283
摘要

Graph convolutional networks (GCNs) are powerful tools for analyzing structured data with entities based on messages passing between a node and its surrounding nodes; these networks exhibit exceptional capabilities in diverse complex graph learning tasks. However, despite GCNs being capable of incorporating information from entities, they often neglect the structural connections between the entities generated by latent factors. In this study, we propose a global disentangled graph convolutional neural network based on a graph topological metric to identify these latent factors and perform graph-level disentanglement learning. In the proposed framework, a simple graph is accepted as the input and disentangled into several factorized graphs. Each factorized graph represents a latent factor and the disentangled relationship among the nodes. Specifically, our approach decouples the message passing process in GCNs into two distinct flows, feature and structural information flow. Importantly, a topological metric, named mean average distance, is introduced to promote the disentanglement among the factor graphs. Furthermore, we utilize the Jensen–Shannon MI estimator to promote disentanglement through feature information flow. Experiments on synthetic and real-world datasets demonstrated the superiority of our framework over state-of-the-art GNN networks. This work introduces a novel approach, preserving independence among latent factors while ensuring each factor maintains a consistent and interpretable meaning. We anticipate that this research can provide theoretical and technical analysis to further advance the understanding of graph disentanglement learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助海的声音采纳,获得10
1秒前
1秒前
ERICLEE82完成签到,获得积分10
1秒前
胖哥发布了新的文献求助10
2秒前
聂珩完成签到,获得积分10
3秒前
orixero应助lemon5659068采纳,获得50
3秒前
llxgjx完成签到,获得积分10
4秒前
小熊发布了新的文献求助20
4秒前
4秒前
烟花应助又得起名了采纳,获得10
5秒前
科研通AI2S应助ccm采纳,获得10
5秒前
6秒前
流星发布了新的文献求助10
6秒前
sushx完成签到,获得积分10
7秒前
丰知然应助我是站长才怪采纳,获得10
7秒前
zhangxh应助岳小龙采纳,获得10
8秒前
锅炉大导演应助黄dudu采纳,获得10
9秒前
科研小江发布了新的文献求助10
9秒前
chw发布了新的文献求助10
9秒前
若水发布了新的文献求助30
10秒前
今后应助俊逸的翅膀采纳,获得10
11秒前
缘子你好发布了新的文献求助10
12秒前
dreamode应助岳小龙采纳,获得10
12秒前
传奇3应助chw采纳,获得10
13秒前
CodeCraft应助岳小龙采纳,获得10
15秒前
AQI完成签到,获得积分10
16秒前
17秒前
again发布了新的文献求助10
17秒前
文艺的初露完成签到,获得积分20
17秒前
茜文发布了新的文献求助10
19秒前
Singularity应助岳小龙采纳,获得10
19秒前
刘小胖关注了科研通微信公众号
20秒前
21秒前
22秒前
22秒前
23秒前
23秒前
CodeCraft应助文艺的初露采纳,获得10
24秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455209
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021471
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502452
科研通“疑难数据库(出版商)”最低求助积分说明 694529
邀请新用户注册赠送积分活动 693302