Global disentangled graph convolutional neural network based on a graph topological metric

计算机科学 理论计算机科学 图形 拓扑图论 特征学习 潜变量 公制(单位) 卷积神经网络 图形属性 数据挖掘 机器学习 电压图 折线图 运营管理 经济
作者
Wenzhen Liu,Guoqiang Zhou,Xiaoyu Mao,Shu‐Di Bao,Haoran Li,Jiahua Shi,Huaming Chen,Jun Shen,Yuanming Huang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:284: 111283-111283 被引量:1
标识
DOI:10.1016/j.knosys.2023.111283
摘要

Graph convolutional networks (GCNs) are powerful tools for analyzing structured data with entities based on messages passing between a node and its surrounding nodes; these networks exhibit exceptional capabilities in diverse complex graph learning tasks. However, despite GCNs being capable of incorporating information from entities, they often neglect the structural connections between the entities generated by latent factors. In this study, we propose a global disentangled graph convolutional neural network based on a graph topological metric to identify these latent factors and perform graph-level disentanglement learning. In the proposed framework, a simple graph is accepted as the input and disentangled into several factorized graphs. Each factorized graph represents a latent factor and the disentangled relationship among the nodes. Specifically, our approach decouples the message passing process in GCNs into two distinct flows, feature and structural information flow. Importantly, a topological metric, named mean average distance, is introduced to promote the disentanglement among the factor graphs. Furthermore, we utilize the Jensen–Shannon MI estimator to promote disentanglement through feature information flow. Experiments on synthetic and real-world datasets demonstrated the superiority of our framework over state-of-the-art GNN networks. This work introduces a novel approach, preserving independence among latent factors while ensuring each factor maintains a consistent and interpretable meaning. We anticipate that this research can provide theoretical and technical analysis to further advance the understanding of graph disentanglement learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qxsw_zjy完成签到,获得积分10
刚刚
wanci应助听风采纳,获得50
刚刚
诚心的冰棍完成签到,获得积分10
刚刚
AllenZ发布了新的文献求助10
刚刚
哟哟发布了新的文献求助10
1秒前
彭于晏应助hhh采纳,获得10
1秒前
1秒前
CipherSage应助4564321采纳,获得30
1秒前
琪琪七七发布了新的文献求助30
2秒前
哈哈完成签到,获得积分10
2秒前
涂常青完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
Preseverance完成签到,获得积分10
4秒前
陈_Ccc完成签到 ,获得积分10
4秒前
董书豪完成签到,获得积分20
4秒前
5秒前
LIUYC完成签到,获得积分10
5秒前
syalonyui发布了新的文献求助10
6秒前
zzz关闭了zzz文献求助
6秒前
lilila666发布了新的文献求助10
6秒前
踏实傲菡完成签到,获得积分10
6秒前
愉快的真完成签到,获得积分0
7秒前
ding应助谢序泽采纳,获得10
7秒前
admin发布了新的文献求助10
7秒前
7秒前
SCINEXUS应助Mycee采纳,获得50
8秒前
qqwrv发布了新的文献求助10
8秒前
qin发布了新的文献求助10
8秒前
9秒前
9秒前
朝天发布了新的文献求助10
9秒前
9秒前
4564321完成签到,获得积分10
10秒前
游舒平发布了新的文献求助10
11秒前
11秒前
丰富青雪完成签到 ,获得积分10
11秒前
科研白白完成签到,获得积分10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124