Identification of Parkinson’s Disease Associated Genes Through Explicable Deep Learning and Bioinformatic

鉴定(生物学) 疾病 基因 计算生物学 帕金森病 生物 遗传学 医学 植物 病理
作者
Yuxin Zhang,Xiangrong Sun,Peng Zhang,Xudan Zhou,Xiansheng Huang,Mingzhi Zhang,Guanhua Qiao,Jing Xu,Ming Chen,Shu Wei
出处
期刊:Communications in computer and information science 卷期号:: 136-146
标识
DOI:10.1007/978-981-97-0903-8_14
摘要

Weutilized interpretable deep learning methodologies to discern critical genes and latent biomarkers associated with Parkinson’s disease (PD). Gene expression data were collected from the GEO dataset, subjected to rigorous differential expression analysis to curate genes for subsequent scrutiny. Based on the P-Net and PASNet models, we have developed a pathway-related deep learning model that integrates PD-associated gene expression data with established biological pathways. This method has yielded satisfactory results, manifesting an Area Under the Curve (AUC) of 0.73 and an F1 score of 0.71, thereby efficaciously discriminating PD patients and bestowing novel insights into the pertinent biological pathways. Through interpretable deep learning models, we have identified potential biomarkers (XK, PDK1, TUBA4B, TP53) and their associated biological pathways (innate immune system, hemostasis, G protein-coupled receptor signaling pathway) related to Parkinson’s disease. The importance of these genes has been validated through external datasets and UPDRS III scores. Of particular significance is the XK gene, also known as Kell blood group precursor, and numerous XK gene mutations have been linked to the McLeod syndrome which exhibits symptomatic similarities with PD. Taken together, we identified several PD associated genes by explicable deep learning and bioinformatics methods, and XK gene was demonstrated a close correlation to PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuna完成签到,获得积分10
1秒前
1秒前
yar驳回了Ava应助
2秒前
Jasper应助可期采纳,获得10
2秒前
木木完成签到,获得积分10
3秒前
縤雨完成签到 ,获得积分10
3秒前
yunjian1583完成签到,获得积分10
3秒前
firewood完成签到,获得积分10
3秒前
无所谓的啦完成签到,获得积分10
4秒前
淡然思卉完成签到,获得积分10
4秒前
晨曦应助maodoudou采纳,获得20
6秒前
彭于晏应助YYLLTX采纳,获得10
6秒前
木木发布了新的文献求助10
7秒前
萝卜完成签到,获得积分10
7秒前
Lengbo完成签到,获得积分10
8秒前
六步郎完成签到,获得积分10
8秒前
美丽的仙人掌完成签到,获得积分10
9秒前
9秒前
11秒前
666完成签到 ,获得积分10
11秒前
cavendipeng完成签到,获得积分10
12秒前
13秒前
大吴克发布了新的文献求助10
14秒前
14秒前
tian发布了新的文献求助10
15秒前
Sherry发布了新的文献求助10
15秒前
16秒前
ccyy完成签到 ,获得积分10
17秒前
17秒前
木木完成签到,获得积分10
18秒前
英俊的铭应助sss采纳,获得10
18秒前
伯赏泽洋完成签到,获得积分10
18秒前
KKKK完成签到,获得积分10
19秒前
by完成签到,获得积分10
19秒前
Zoe完成签到,获得积分10
19秒前
19秒前
jianglan完成签到,获得积分10
20秒前
20秒前
耍酷的翠曼完成签到,获得积分10
20秒前
查理fofo完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093764
捐赠科研通 3229662
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869467
科研通“疑难数据库(出版商)”最低求助积分说明 801470