透明质酸
材料科学
胶粘剂
椎间盘
自粘
自愈水凝胶
碱基
自愈
生物医学工程
复合材料
高分子化学
外科
生物化学
DNA
医学
化学
遗传学
替代医学
图层(电子)
病理
生物
作者
Rong Yang,Biao Wang,Xiaoping Zhang,Yage Sun,Yiming Zhang,Ziyang Xu,Qiang Yang,Wenguang Liu
标识
DOI:10.1002/adfm.202401232
摘要
Abstract Cell therapy strategies hold great promise for nucleus pulposus (NP) regeneration and intervertebral disc degeneration (IVDD) treatment. However, their therapeutic efficiency is compromised by the anoikis of administered cells and the harsh environment in degenerated intervertebral discs (IVD). Inspired by the ability of nucleobases to form multiple H‐bonds, a nucleobase‐driven self‐gelling strategy is proposed for the incorporation of nucleobases (e.g., thymine) into hyaluronic acid (HA) chains to trigger gel formation through enhanced intermolecular H‐bond interactions. An aqueous solution of a thymine‐modified HA (HAT) supramolecular polymer is shown to exhibit self‐gelation behavior, injectability, tissue adhesion, and hydration capacity (comparable to that observed in the NP tissue of a 25‐year‐old adult). These characteristics enable the injection and filling of the HAT hydrogel system in the IVD, integration of the separated NP tissues, restoration of the biomechanical functions of the degenerated IVD, and securing of the encapsulated cells in the NP site. Manganese dioxide (MnO 2 ) nanoparticles incorporated into the HAT system (HATMn) regulate oxidative stress and the hypoxic microenvironment in degenerated IVD, ensuring the viability of the encapsulated cells. The 12‐week in vivo study results demonstrate that the administration of the MSCs‐laden HATMn system (HATMn‐MSCs) effectively restores the structure and function of degenerated IVD.
科研通智能强力驱动
Strongly Powered by AbleSci AI