已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Adversarial Contrastive Learning for Evidence-Aware Fake News Detection With Graph Neural Networks

计算机科学 人工智能 互联网 人工神经网络 情报检索 机器学习 万维网
作者
Junfei Wu,Weizhi Xu,Qiang Liu,Shu Wu,Liang Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 5591-5604 被引量:15
标识
DOI:10.1109/tkde.2023.3341640
摘要

The prevalence and perniciousness of fake news have been a critical issue on the Internet, which stimulates the development of automatic fake news detection in turn. In this paper, we focus on the evidence-based fake news detection, where several evidences are utilized to probe the veracity of news (i.e., a claim). Most previous methods first employ sequential models to embed the semantic information and then capture the claim-evidence interaction based on different attention mechanisms. Despite their effectiveness, they still suffer from three weaknesses. Firstly, due to the inherent drawbacks of sequential models, they fail to integrate the relevant information that is scattered far apart in evidences for veracity checking. Secondly, they underestimate much redundant information contained in evidences that may be useless or even harmful. Thirdly, insufficient data utilization limits the separability and reliability of representations captured by the model, which are sensitive to local evidence. To solve these problems, we propose a unified G raph-based s E mantic structure mining framework with Con TRA stive L earning, namely GETRAL in short. Specifically, different from the existing work that treats claims and evidences as sequences, we first model them as graph-structured data and capture the long-distance semantic dependency among dispersed relevant snippets via neighborhood propagation. After obtaining contextual semantic information, our model reduces information redundancy by performing graph structure learning. Then the fine-grained semantic representations are fed into the downstream claim-evidence interaction module for predictions. Finally, the supervised contrastive learning accompanied with adversarial augmented instances is applied to make full use of data and strengthen the representation learning. Comprehensive experiments have demonstrated the superiority of GETRAL over the state-of-the-arts and validated the efficacy of semantic mining with graph structure and contrastive learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天空之城完成签到,获得积分10
刚刚
wwdd完成签到,获得积分10
刚刚
元元们的妈妈完成签到,获得积分10
3秒前
adgcxvjj发布了新的文献求助10
7秒前
8秒前
Hello应助温颂采纳,获得10
9秒前
小林同学0219完成签到 ,获得积分10
11秒前
武勇发布了新的文献求助10
14秒前
19秒前
NexusExplorer应助adgcxvjj采纳,获得10
20秒前
医研丁真完成签到 ,获得积分10
24秒前
魏阳虹完成签到 ,获得积分10
29秒前
An完成签到,获得积分10
35秒前
WEIWEI完成签到,获得积分10
41秒前
42秒前
43秒前
武勇发布了新的文献求助10
49秒前
昌昌昌完成签到 ,获得积分10
50秒前
adgcxvjj完成签到,获得积分10
52秒前
猛男完成签到,获得积分10
53秒前
wzh19940205完成签到,获得积分10
56秒前
霁星河完成签到,获得积分10
56秒前
爽朗雨后风完成签到,获得积分10
1分钟前
搜集达人应助聪慧水池采纳,获得10
1分钟前
1分钟前
好想被风刮走完成签到,获得积分10
1分钟前
1分钟前
1分钟前
温颂发布了新的文献求助10
1分钟前
Ava应助1111sss采纳,获得10
1分钟前
wen应助金枪鱼子采纳,获得10
1分钟前
子车茗应助金枪鱼子采纳,获得30
1分钟前
GGGGEEEE完成签到,获得积分10
1分钟前
云一发布了新的文献求助10
1分钟前
1分钟前
1分钟前
ZYY完成签到,获得积分10
1分钟前
田様应助wowwyw采纳,获得10
1分钟前
英姑应助云一采纳,获得10
1分钟前
1111sss发布了新的文献求助10
1分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311000
求助须知:如何正确求助?哪些是违规求助? 2943859
关于积分的说明 8516564
捐赠科研通 2619145
什么是DOI,文献DOI怎么找? 1432095
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649802