劈形算符
物理
可微函数
收敛速度
巴(单位)
订单(交换)
凸函数
数学物理
摄动(天文学)
数学分析
组合数学
正多边形
数学
几何学
欧米茄
量子力学
频道(广播)
经济
气象学
工程类
电气工程
财务
作者
Jiahui Cai,Jun‐Ren Luo
摘要
In this paper, we study the decay estimate of the trajectories of the second order differential equation:$ \ddot{x}(t)+\gamma (t) \dot{x}(t)+\nabla F(x(t)) = g(t), $where $ \gamma (t) = \frac{\alpha }{t} $ is a viscous damping coefficient with $ \alpha >0 $, $ F $ is a convex differentiable function, and $ g(t) $ is a small perturbation term. We are concerned in the optimal convergence rates for damped inertial gradient dynamics with flat geometries, which is proposed in Sebbouh and Dossal (SIAM J Optim 30: 1850-1877, 2020). Making use of some Lyapunov functions and iteration method, we get some results. More specifically, we obtained the convergence rate $ t^{-{\frac{2\gamma \alpha }{\gamma +2}} } $ of $ F(x(t))-F^* $ when $ 1+\frac{2}{\gamma } < \alpha <\frac{\gamma +2}{\gamma -2} $. In addition, for the case $ \alpha<1+\frac{2}{\gamma} $, we proved that the convergence rate cannot be better than $ t^{-\frac{2\bar{\gamma } \alpha }{\gamma +2} } $ for $ \bar{ \gamma }\le\gamma+2 $.
科研通智能强力驱动
Strongly Powered by AbleSci AI