A novel model for predicting prognosis and response to immunotherapy in nasopharyngeal carcinoma patients

医学 鼻咽癌 内科学 肿瘤科 接收机工作特性 比例危险模型 队列 一致性 生物标志物 免疫疗法 曲线下面积 Lasso(编程语言) 癌症 免疫学 生物 放射治疗 生物化学 万维网 计算机科学
作者
Yamin Wu,Bian Tian,Xiaomin Ou,Mingqing Wu,Qi Huang,Runkun Han,Xianli He,Shulin Chen
出处
期刊:Cancer Immunology, Immunotherapy [Springer Science+Business Media]
卷期号:73 (1)
标识
DOI:10.1007/s00262-023-03626-w
摘要

Abstract Blood-based biomarkers of immune checkpoint inhibitors (ICIs) response in patients with nasopharyngeal carcinoma (NPC) are lacking, so it is necessary to identify biomarkers to select NPC patients who will benefit most or least from ICIs. The absolute values of lymphocyte subpopulations, biochemical indexes, and blood routine tests were determined before ICIs-based treatments in the training cohort ( n = 130). Then, the least absolute shrinkage and selection operator (Lasso) Cox regression analysis was developed to construct a prediction model. The performances of the prediction model were compared to TNM stage, treatment, and Epstein–Barr virus (EBV) DNA using the concordance index (C-index). Progression-free survival (PFS) was estimated by Kaplan–Meier (K–M) survival curve. Other 63 patients were used for validation cohort. The novel model composed of histologic subtypes, CD19 + B cells, natural killer (NK) cells, regulatory T cells, red blood cells (RBC), AST/ALT ratio (SLR), apolipoprotein B (Apo B), and lactic dehydrogenase (LDH). The C-index of this model was 0.784 in the training cohort and 0.735 in the validation cohort. K–M survival curve showed patients with high-risk scores had shorter PFS compared to the low-risk groups. For predicting immune therapy responses, the receiver operating characteristic (ROC), decision curve analysis (DCA), net reclassifcation improvement index (NRI) and integrated discrimination improvement index (IDI) of this model showed better predictive ability compared to EBV DNA. In this study, we constructed a novel model for prognostic prediction and immunotherapeutic response prediction in NPC patients, which may provide clinical assistance in selecting those patients who are likely to gain long-lasting clinical benefits to anti-PD-1 therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白开水完成签到,获得积分10
1秒前
流云完成签到,获得积分10
2秒前
匹诺曹完成签到,获得积分10
2秒前
HaojunWang完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
LilyHan完成签到,获得积分20
5秒前
梁业完成签到,获得积分10
6秒前
苗条映寒关注了科研通微信公众号
6秒前
深情安青应助and999采纳,获得10
6秒前
兮豫完成签到 ,获得积分10
6秒前
6秒前
6秒前
Gtx完成签到,获得积分10
7秒前
淡定大雁关注了科研通微信公众号
7秒前
7秒前
钱多多完成签到,获得积分10
8秒前
王岚发布了新的文献求助10
8秒前
Owen应助栗子采纳,获得10
8秒前
8秒前
欣妹儿发布了新的文献求助10
9秒前
9秒前
包容仙人掌完成签到,获得积分10
9秒前
受伤灵薇完成签到,获得积分10
10秒前
yeyeye发布了新的文献求助10
10秒前
onepine发布了新的文献求助10
10秒前
colormeblue完成签到 ,获得积分10
10秒前
张开心发布了新的文献求助10
10秒前
思源应助Adeus采纳,获得10
10秒前
11秒前
毛毛虫完成签到,获得积分10
11秒前
深情安青应助牛至采纳,获得10
11秒前
11秒前
xixi发布了新的文献求助10
12秒前
12秒前
酋长家大母鹅完成签到,获得积分10
13秒前
霡霂完成签到,获得积分10
13秒前
ASD发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097403
求助须知:如何正确求助?哪些是违规求助? 4309929
关于积分的说明 13428703
捐赠科研通 4137399
什么是DOI,文献DOI怎么找? 2266602
邀请新用户注册赠送积分活动 1269747
关于科研通互助平台的介绍 1206069