A novel model for predicting prognosis and response to immunotherapy in nasopharyngeal carcinoma patients

医学 鼻咽癌 内科学 肿瘤科 接收机工作特性 比例危险模型 队列 一致性 生物标志物 免疫疗法 曲线下面积 Lasso(编程语言) 癌症 免疫学 生物 放射治疗 生物化学 万维网 计算机科学
作者
Yamin Wu,Bian Tian,Xiaomin Ou,Mingqing Wu,Qi Huang,Runkun Han,Xianli He,Shulin Chen
出处
期刊:Cancer Immunology, Immunotherapy [Springer Nature]
卷期号:73 (1)
标识
DOI:10.1007/s00262-023-03626-w
摘要

Abstract Blood-based biomarkers of immune checkpoint inhibitors (ICIs) response in patients with nasopharyngeal carcinoma (NPC) are lacking, so it is necessary to identify biomarkers to select NPC patients who will benefit most or least from ICIs. The absolute values of lymphocyte subpopulations, biochemical indexes, and blood routine tests were determined before ICIs-based treatments in the training cohort ( n = 130). Then, the least absolute shrinkage and selection operator (Lasso) Cox regression analysis was developed to construct a prediction model. The performances of the prediction model were compared to TNM stage, treatment, and Epstein–Barr virus (EBV) DNA using the concordance index (C-index). Progression-free survival (PFS) was estimated by Kaplan–Meier (K–M) survival curve. Other 63 patients were used for validation cohort. The novel model composed of histologic subtypes, CD19 + B cells, natural killer (NK) cells, regulatory T cells, red blood cells (RBC), AST/ALT ratio (SLR), apolipoprotein B (Apo B), and lactic dehydrogenase (LDH). The C-index of this model was 0.784 in the training cohort and 0.735 in the validation cohort. K–M survival curve showed patients with high-risk scores had shorter PFS compared to the low-risk groups. For predicting immune therapy responses, the receiver operating characteristic (ROC), decision curve analysis (DCA), net reclassifcation improvement index (NRI) and integrated discrimination improvement index (IDI) of this model showed better predictive ability compared to EBV DNA. In this study, we constructed a novel model for prognostic prediction and immunotherapeutic response prediction in NPC patients, which may provide clinical assistance in selecting those patients who are likely to gain long-lasting clinical benefits to anti-PD-1 therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2568269431完成签到 ,获得积分10
刚刚
panzer发布了新的文献求助10
刚刚
刚刚
1秒前
smile发布了新的文献求助10
1秒前
2秒前
酷炫蚂蚁发布了新的文献求助10
2秒前
2秒前
Andy_Cheung完成签到,获得积分10
2秒前
feng完成签到,获得积分10
3秒前
maomao发布了新的文献求助10
3秒前
leena完成签到,获得积分10
3秒前
3秒前
青衣北风发布了新的文献求助10
4秒前
feng发布了新的文献求助10
4秒前
guygun发布了新的文献求助10
7秒前
小灰灰完成签到,获得积分10
8秒前
8秒前
海鸥海鸥发布了新的文献求助10
9秒前
青衣北风完成签到,获得积分10
9秒前
11秒前
MasterE完成签到,获得积分10
12秒前
我的小伙伴应助feng采纳,获得10
12秒前
善学以致用应助feng采纳,获得10
12秒前
13秒前
13秒前
gaoww发布了新的文献求助10
13秒前
小二发布了新的文献求助10
17秒前
solobang发布了新的文献求助10
18秒前
CodeCraft应助Jocelyn7采纳,获得10
18秒前
秋之月完成签到,获得积分10
18秒前
19秒前
cheche关注了科研通微信公众号
19秒前
20秒前
科研小民工应助kento采纳,获得50
21秒前
完美世界应助小萌采纳,获得10
22秒前
22秒前
gaoww完成签到,获得积分10
22秒前
23秒前
WZ0904发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824