A novel model for predicting prognosis and response to immunotherapy in nasopharyngeal carcinoma patients

医学 鼻咽癌 内科学 肿瘤科 接收机工作特性 比例危险模型 队列 一致性 生物标志物 免疫疗法 曲线下面积 Lasso(编程语言) 癌症 免疫学 生物 放射治疗 生物化学 万维网 计算机科学
作者
Yamin Wu,Bian Tian,Xiaomin Ou,Mingqing Wu,Qi Huang,Runkun Han,Xianli He,Shulin Chen
出处
期刊:Cancer Immunology, Immunotherapy [Springer Nature]
卷期号:73 (1)
标识
DOI:10.1007/s00262-023-03626-w
摘要

Abstract Blood-based biomarkers of immune checkpoint inhibitors (ICIs) response in patients with nasopharyngeal carcinoma (NPC) are lacking, so it is necessary to identify biomarkers to select NPC patients who will benefit most or least from ICIs. The absolute values of lymphocyte subpopulations, biochemical indexes, and blood routine tests were determined before ICIs-based treatments in the training cohort ( n = 130). Then, the least absolute shrinkage and selection operator (Lasso) Cox regression analysis was developed to construct a prediction model. The performances of the prediction model were compared to TNM stage, treatment, and Epstein–Barr virus (EBV) DNA using the concordance index (C-index). Progression-free survival (PFS) was estimated by Kaplan–Meier (K–M) survival curve. Other 63 patients were used for validation cohort. The novel model composed of histologic subtypes, CD19 + B cells, natural killer (NK) cells, regulatory T cells, red blood cells (RBC), AST/ALT ratio (SLR), apolipoprotein B (Apo B), and lactic dehydrogenase (LDH). The C-index of this model was 0.784 in the training cohort and 0.735 in the validation cohort. K–M survival curve showed patients with high-risk scores had shorter PFS compared to the low-risk groups. For predicting immune therapy responses, the receiver operating characteristic (ROC), decision curve analysis (DCA), net reclassifcation improvement index (NRI) and integrated discrimination improvement index (IDI) of this model showed better predictive ability compared to EBV DNA. In this study, we constructed a novel model for prognostic prediction and immunotherapeutic response prediction in NPC patients, which may provide clinical assistance in selecting those patients who are likely to gain long-lasting clinical benefits to anti-PD-1 therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jared应助HUIHUI采纳,获得10
刚刚
郑大大应助科研通管家采纳,获得10
刚刚
小禾发布了新的文献求助10
刚刚
刚刚
三岁应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
小二郎应助wxt采纳,获得10
刚刚
mimi完成签到 ,获得积分10
刚刚
1123048683wm完成签到,获得积分10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
三岁应助科研通管家采纳,获得10
1秒前
1秒前
不倦应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
xjf关注了科研通微信公众号
1秒前
张卓情完成签到,获得积分10
2秒前
2秒前
CipherSage应助彩色的大碗采纳,获得10
2秒前
CC发布了新的文献求助10
2秒前
哎呀发布了新的文献求助10
2秒前
沐阳d完成签到,获得积分10
3秒前
在水一方应助周新运采纳,获得10
3秒前
小二郎应助缓慢凝云采纳,获得10
3秒前
xiang发布了新的文献求助10
3秒前
3秒前
li完成签到,获得积分10
3秒前
tassssadar完成签到,获得积分10
4秒前
ZHANG完成签到,获得积分10
4秒前
glucose发布了新的文献求助10
4秒前
小二郎应助zz采纳,获得10
4秒前
Sonify完成签到,获得积分10
5秒前
5秒前
OLAY完成签到,获得积分10
5秒前
俏皮的忆南关注了科研通微信公众号
6秒前
key完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647752
求助须知:如何正确求助?哪些是违规求助? 4774203
关于积分的说明 15041173
捐赠科研通 4806669
什么是DOI,文献DOI怎么找? 2570374
邀请新用户注册赠送积分活动 1527179
关于科研通互助平台的介绍 1486224