电化学
钠
镍
材料科学
锰
相(物质)
氧化物
煅烧
电池(电)
离子
钠离子电池
化学工程
化学
电极
法拉第效率
冶金
热力学
物理化学
催化作用
有机化学
功率(物理)
工程类
物理
生物化学
作者
Feifei Hong,Xin Zhou,Xiaohong Liu,Guilin Feng,Heng Zhang,Weifeng Fan,Bin Zhang,Meihua Zuo,Wangyan Xing,Ping Zhang,Hua Yan,Wei Xiang
标识
DOI:10.1016/j.jechem.2024.01.025
摘要
Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries, but their electrochemical properties are highly related to compositional diversity. Diverse composite materials with various phase structures of P3, P2/P3, P2, P2/O3, and P2/P3/O3 were synthesized by manipulating the sodium content and calcination conditions, leading to the construction of a synthetic phase diagram for NaxNi0.25Mn0.75O2 (0.45≤x≤1.1). Then, we compared the electrochemical characteristics and structural evolution during the desodiation/sodiation process of P2, P2/P3, P2/O3, and P2/P3/O3-NaxNi0.25Mn0.75O2. Among them, P2/P3-Na0.75Ni0.25Mn0.75O2 exhibits the best rate capability of 90.9 mA h g−1 at 5 C, with an initial discharge capacity of 142.62 mA h g−1 at 0.1 C and a capacity retention rate of 78.25% after 100 cycles at 1 C in the voltage range of 2–4.3 V. The observed superior sodium storage performance of P2/P3 hybrids compared to other composite phases can be attributed to the enhanced Na+ transfer dynamic, reduction of the Jahn-teller effect, and improved reaction reversibility induced by the synergistic effect of P2 and P3 phases. The systematic research and exploration of phases in NaxNi0.25Mn0.75O2 provide new sights into high-performance nickel-manganese binary layered oxide for sodium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI