Cross-scale mapping of above-ground biomass and shrub dominance by integrating UAV and satellite data in temperate grassland

遥感 优势(遗传学) 草原 灌木 环境科学 卫星图像 植被(病理学) 自然地理学 地理 生态学 病理 生物化学 化学 医学 生物 基因
作者
Ang Chen,Cong Xu,Min Zhang,Jian-You Guo,Xiaoyu Xing,Dong Yang,Bin Xu,Xiuchun Yang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:304: 114024-114024 被引量:16
标识
DOI:10.1016/j.rse.2024.114024
摘要

Shrub encroachment, characterized by the proliferation of shrubs into grasslands, is a challenge faced by grasslands worldwide that significantly impacts livestock production and ecosystem functions. Rapid and accurate estimation of shrub dominance is important for understanding changes in plant community structures and formulating grassland management policies. However, the limited spatial resolution of commonly used satellite imagery poses a challenge when estimating shrub dominance at the landscape scale. The rapid development of Unoccupied Aerial Vehicles (UAVs) has opened up new opportunities for cross-scale observations of shrub encroachment in grasslands by effectively bridging the scale gap between ground sampling and satellite image pixels while reducing the required groundwork. This study utilized ground reference data, UAV data (RGB, hyperspectral, and LiDAR), and satellite data (Sentinel-1 and Sentinel-2) to estimate shrub and total above-ground biomass (AGB) in temperate grasslands to map the shrub dominance. First, UAV data were applied at the plot scale for the classification of shrub and herbaceous vegetation using the maximum entropy model (MaxEnt), estimation of shrub AGB by employing the vegetation index weighted canopy volume model (CVMVI), and estimation of herbaceous AGB based on the partial least squares regression (PLSR). Second, UAV AGB mapping results were upscaled as samples at the landscape scale and integrated with satellite imagery to establish the shrub and total AGB models using the extreme gradient boosting (XGBoost). Finally, shrub dominance, represented as shrub AGB/total AGB, was mapped across the study area. We found that at the plot scale, the MaxEnt model achieved an overall accuracy of 0.990 for object-based classification. The CVMVI combined with canopy height model and narrow-band vegetation index achieved the highest accuracy for estimating shrub AGB (R2 = 0.821, RMSE = 30.1 g). The PLSR combined with features derived from all UAV data achieved the highest accuracy for estimating herbaceous AGB (R2 = 0.856, RMSE = 9.1 g/m2). At the landscape scale, the XGBoost achieved high accuracy for estimating both the shrub AGB (R2 = 0.719, RMSE = 4.2 g/m2) and total AGB (R2 = 0.961, RMSE = 5.0 g/m2). The high-precision mapping results further facilitate the generation of shrub dominance maps at a landscape scale. This study presents a more accurate and efficient framework for mapping shrub AGB, total AGB, and shrub dominance using multi-scale remote sensing data, which offers new approaches for large-scale grassland AGB mapping and monitoring of shrub encroachment in grasslands.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tjunqi完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助下课了吧采纳,获得10
1秒前
1秒前
1秒前
好的完成签到,获得积分20
2秒前
蜂蜜不是糖完成签到 ,获得积分10
2秒前
狮子最爱吃芒果完成签到,获得积分10
2秒前
3秒前
4秒前
尘雾完成签到,获得积分10
4秒前
澜生发布了新的文献求助10
5秒前
leekle完成签到,获得积分10
6秒前
shengChen发布了新的文献求助10
6秒前
自信鞯发布了新的文献求助10
7秒前
江北小赵完成签到,获得积分10
7秒前
7秒前
7秒前
clock完成签到 ,获得积分10
7秒前
虫二先生完成签到 ,获得积分10
7秒前
甜甜的难敌完成签到,获得积分10
8秒前
8秒前
9秒前
小潘同学完成签到,获得积分10
9秒前
9秒前
科研通AI5应助传统的海露采纳,获得10
10秒前
学术刘亦菲完成签到,获得积分10
10秒前
成就的烧鹅完成签到,获得积分20
10秒前
11秒前
dd发布了新的文献求助10
11秒前
luoshi应助leon采纳,获得30
12秒前
12秒前
wang完成签到,获得积分10
12秒前
可爱的函函应助hu采纳,获得10
12秒前
12秒前
我测你码关注了科研通微信公众号
13秒前
下课了吧发布了新的文献求助10
13秒前
jy发布了新的文献求助10
13秒前
绘梨衣完成签到,获得积分10
14秒前
数据线完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794