表(数据库)
感觉系统
表征(材料科学)
食品科学
生物系统
化学
矿物学
生化工程
计算机科学
纳米技术
材料科学
心理学
生物
工程类
数据挖掘
认知心理学
作者
Spyros Georgiou,Ioanna S. Kosma,Anastasia V. Badeka,Michael G. Kontominas
标识
DOI:10.1016/j.microc.2024.110085
摘要
Kalamata table olives were collected from the regions: Messinia, Lakonia, Etoloakarnania, Phthiotida and Arta in Greece, during the harvest years: 2019–2020 and 2020–2021 at the stage of full maturity. Parameters determined included: moisture, pH, titratable acidity, total soluble solids, volatile compounds (VC), electrical conductivity, total phenolics (TPC), antioxidant activity, resistance to penetration and load as well as the sensory parameters: Salty, bitter, acidic, hardness, fibrousness and crunchiness in order to characterize and classify Kalamata table olives with regard to geographical origin. Analytical data were statistically treated using Multivariate analysis of variance (MANOVA) and linear discriminant analysis (LDA). A classification rate of 77.6 % resulted using physical / chemical / mechanical properties, 80.9 % using physical / chemical / mechanical properties plus volatiles and 83.7 % using physical / chemical / mechanical plus sensory properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI