Integrating Multiple Sources Knowledge for Class Asymmetry Domain Adaptation Segmentation of Remote Sensing Images

计算机科学 班级(哲学) 分割 域适应 交叉口(航空) 领域(数学分析) 适应(眼睛) 集合(抽象数据类型) 遥感 人工智能 地理 物理 地图学 光学 分类器(UML) 数学分析 程序设计语言 数学
作者
Kuiliang Gao,Anzhu Yu,You Xiong,Wenyue Guo,Ke Li,Ningbo Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2023.3345159
摘要

In the existing unsupervised domain adaptation (UDA) methods for remote sensing images (RSIs) semantic segmentation, class symmetry is a widely followed ideal assumption, where the source and target RSIs have exactly the same class space. In practice, however, it is often very difficult to find a source RSI with exactly the same classes as the target RSI. More commonly, there are multiple source RSIs available. And there is always an intersection or inclusion relationship between the class spaces of each source–target pair, which can be referred to as class asymmetry. Nevertheless, the class asymmetry domain adaptation segmentation of RSIs with multiple sources has not yet been explored. To this end, a novel class asymmetry RSIs domain adaptation method is proposed for the first time in this article, which consists of four key components. First, a multibranch segmentation network is built to learn an expert for each source RSI. Second, a novel collaborative learning method with the cross-domain mixing strategy is proposed, to supplement the class information for each source while achieving the domain adaptation of each source–target pair. Third, a pseudolabel generation strategy is proposed to effectively combine the strengths of different experts, which can be flexibly applied to two cases where the source class union is equal to or includes the target class set. Fourth, a multiview-enhanced knowledge integration module is developed for high-level knowledge routing and transfer from multiple domains to target predictions. The experimental results of six different class settings on airborne and spaceborne RSIs show that the proposed method can effectively perform the multisource domain adaptation in the case of class asymmetry, and the obtained segmentation performance of target RSIs is significantly better than the existing relevant methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小的玛卡吧卡完成签到 ,获得积分10
刚刚
2秒前
Ellie完成签到 ,获得积分10
3秒前
3秒前
5秒前
xiaoqi666完成签到 ,获得积分10
6秒前
7秒前
科研通AI5应助shijie805采纳,获得10
9秒前
小远远发布了新的文献求助10
9秒前
阿辉完成签到 ,获得积分10
11秒前
华仔应助木木木采纳,获得10
11秒前
11秒前
爪爪完成签到,获得积分10
11秒前
k sir发布了新的文献求助10
14秒前
刘洪均完成签到,获得积分10
14秒前
虚幻灵薇完成签到 ,获得积分10
16秒前
Orange应助慢慢子采纳,获得10
16秒前
星辰大海应助杨烨华采纳,获得10
17秒前
19秒前
诚心的安珊完成签到 ,获得积分10
21秒前
木木木发布了新的文献求助10
22秒前
22秒前
十一玮完成签到,获得积分10
23秒前
暂时想不到昵称完成签到,获得积分10
24秒前
漫漫楚威风完成签到,获得积分10
25秒前
乐乐乐乐完成签到,获得积分10
26秒前
默存完成签到,获得积分10
27秒前
隐形曼青应助小四喜采纳,获得10
27秒前
27秒前
kryptonite发布了新的文献求助10
27秒前
29秒前
青仔仔完成签到,获得积分10
29秒前
可爱的函函应助木木木采纳,获得10
29秒前
默默地读文献应助k sir采纳,获得10
30秒前
在一完成签到,获得积分10
32秒前
杨烨华发布了新的文献求助10
34秒前
37秒前
要减肥的chao完成签到,获得积分10
38秒前
39秒前
福同学完成签到,获得积分10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093