Integrating Multiple Sources Knowledge for Class Asymmetry Domain Adaptation Segmentation of Remote Sensing Images

计算机科学 班级(哲学) 分割 域适应 交叉口(航空) 领域(数学分析) 适应(眼睛) 集合(抽象数据类型) 遥感 人工智能 地理 物理 地图学 光学 数学分析 数学 分类器(UML) 程序设计语言
作者
Kuiliang Gao,Anzhu Yu,You Xiong,Wenyue Guo,Ke Li,Ningbo Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2023.3345159
摘要

In the existing unsupervised domain adaptation (UDA) methods for remote sensing images (RSIs) semantic segmentation, class symmetry is a widely followed ideal assumption, where the source and target RSIs have exactly the same class space. In practice, however, it is often very difficult to find a source RSI with exactly the same classes as the target RSI. More commonly, there are multiple source RSIs available. And there is always an intersection or inclusion relationship between the class spaces of each source–target pair, which can be referred to as class asymmetry. Nevertheless, the class asymmetry domain adaptation segmentation of RSIs with multiple sources has not yet been explored. To this end, a novel class asymmetry RSIs domain adaptation method is proposed for the first time in this article, which consists of four key components. First, a multibranch segmentation network is built to learn an expert for each source RSI. Second, a novel collaborative learning method with the cross-domain mixing strategy is proposed, to supplement the class information for each source while achieving the domain adaptation of each source–target pair. Third, a pseudolabel generation strategy is proposed to effectively combine the strengths of different experts, which can be flexibly applied to two cases where the source class union is equal to or includes the target class set. Fourth, a multiview-enhanced knowledge integration module is developed for high-level knowledge routing and transfer from multiple domains to target predictions. The experimental results of six different class settings on airborne and spaceborne RSIs show that the proposed method can effectively perform the multisource domain adaptation in the case of class asymmetry, and the obtained segmentation performance of target RSIs is significantly better than the existing relevant methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzx发布了新的文献求助20
1秒前
科目三应助满意的天蓝采纳,获得10
2秒前
3秒前
小萌新发布了新的文献求助10
3秒前
可可发布了新的文献求助10
5秒前
黄伊若完成签到 ,获得积分10
6秒前
6秒前
10秒前
晴偏好发布了新的文献求助10
11秒前
虾米发布了新的文献求助20
12秒前
13秒前
13秒前
13秒前
13秒前
Stroeve发布了新的文献求助10
14秒前
14秒前
希望天下0贩的0应助decademe采纳,获得10
14秒前
16秒前
wbgwudi完成签到,获得积分10
16秒前
斯文败类应助宇文青寒采纳,获得10
17秒前
18秒前
DNN发布了新的文献求助10
18秒前
热心市民小红花应助许初采纳,获得10
18秒前
林子发布了新的文献求助10
18秒前
健忘飞风完成签到,获得积分10
19秒前
19秒前
19秒前
超级的抽屉完成签到,获得积分10
21秒前
脑洞疼应助meng采纳,获得10
22秒前
落寞凌波发布了新的文献求助10
22秒前
liwenqiang发布了新的文献求助10
24秒前
在水一方应助林子采纳,获得10
24秒前
sumu应助yb采纳,获得10
24秒前
lydiaabc发布了新的文献求助10
25秒前
biosep完成签到,获得积分10
25秒前
JamesPei应助栗子采纳,获得10
26秒前
steel完成签到,获得积分20
28秒前
善学以致用应助蘑菇采纳,获得10
29秒前
852应助liwenqiang采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719