亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating Multiple Sources Knowledge for Class Asymmetry Domain Adaptation Segmentation of Remote Sensing Images

计算机科学 班级(哲学) 分割 域适应 交叉口(航空) 领域(数学分析) 适应(眼睛) 集合(抽象数据类型) 遥感 人工智能 地理 物理 地图学 光学 数学分析 数学 分类器(UML) 程序设计语言
作者
Kuiliang Gao,Anzhu Yu,You Xiong,Wenyue Guo,Ke Li,Ningbo Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2023.3345159
摘要

In the existing unsupervised domain adaptation (UDA) methods for remote sensing images (RSIs) semantic segmentation, class symmetry is a widely followed ideal assumption, where the source and target RSIs have exactly the same class space. In practice, however, it is often very difficult to find a source RSI with exactly the same classes as the target RSI. More commonly, there are multiple source RSIs available. And there is always an intersection or inclusion relationship between the class spaces of each source–target pair, which can be referred to as class asymmetry. Nevertheless, the class asymmetry domain adaptation segmentation of RSIs with multiple sources has not yet been explored. To this end, a novel class asymmetry RSIs domain adaptation method is proposed for the first time in this article, which consists of four key components. First, a multibranch segmentation network is built to learn an expert for each source RSI. Second, a novel collaborative learning method with the cross-domain mixing strategy is proposed, to supplement the class information for each source while achieving the domain adaptation of each source–target pair. Third, a pseudolabel generation strategy is proposed to effectively combine the strengths of different experts, which can be flexibly applied to two cases where the source class union is equal to or includes the target class set. Fourth, a multiview-enhanced knowledge integration module is developed for high-level knowledge routing and transfer from multiple domains to target predictions. The experimental results of six different class settings on airborne and spaceborne RSIs show that the proposed method can effectively perform the multisource domain adaptation in the case of class asymmetry, and the obtained segmentation performance of target RSIs is significantly better than the existing relevant methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
26秒前
无极微光应助科研通管家采纳,获得20
26秒前
任性云朵完成签到 ,获得积分10
41秒前
大模型应助jing采纳,获得10
1分钟前
1分钟前
奋斗一刀完成签到,获得积分20
1分钟前
1分钟前
1分钟前
jing发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
火星上的幻梦完成签到,获得积分10
1分钟前
zyjsunye完成签到 ,获得积分10
1分钟前
一一完成签到,获得积分10
2分钟前
jing完成签到,获得积分20
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
诚心雪晴完成签到 ,获得积分10
2分钟前
Owen应助Re采纳,获得10
2分钟前
2分钟前
Re发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
su完成签到 ,获得积分10
3分钟前
阿里完成签到,获得积分10
3分钟前
阿里发布了新的文献求助30
4分钟前
4分钟前
4分钟前
pengpengyin发布了新的文献求助10
4分钟前
咔敏完成签到,获得积分10
5分钟前
咔敏发布了新的文献求助10
5分钟前
pengpengyin完成签到,获得积分10
5分钟前
5分钟前
小二郎应助七安得安采纳,获得30
6分钟前
平常囧完成签到,获得积分10
6分钟前
李健应助跳跃的小之采纳,获得10
6分钟前
6分钟前
6分钟前
火速阿百川完成签到,获得积分10
6分钟前
6分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644822
求助须知:如何正确求助?哪些是违规求助? 4765845
关于积分的说明 15025703
捐赠科研通 4803160
什么是DOI,文献DOI怎么找? 2568064
邀请新用户注册赠送积分活动 1525521
关于科研通互助平台的介绍 1485064