Integrating Multiple Sources Knowledge for Class Asymmetry Domain Adaptation Segmentation of Remote Sensing Images

计算机科学 班级(哲学) 分割 域适应 交叉口(航空) 领域(数学分析) 适应(眼睛) 集合(抽象数据类型) 遥感 人工智能 地理 物理 地图学 光学 数学分析 数学 分类器(UML) 程序设计语言
作者
Kuiliang Gao,Anzhu Yu,You Xiong,Wenyue Guo,Ke Li,Ningbo Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:5
标识
DOI:10.1109/tgrs.2023.3345159
摘要

In the existing unsupervised domain adaptation (UDA) methods for remote sensing images (RSIs) semantic segmentation, class symmetry is a widely followed ideal assumption, where the source and target RSIs have exactly the same class space. In practice, however, it is often very difficult to find a source RSI with exactly the same classes as the target RSI. More commonly, there are multiple source RSIs available. And there is always an intersection or inclusion relationship between the class spaces of each source–target pair, which can be referred to as class asymmetry. Nevertheless, the class asymmetry domain adaptation segmentation of RSIs with multiple sources has not yet been explored. To this end, a novel class asymmetry RSIs domain adaptation method is proposed for the first time in this article, which consists of four key components. First, a multibranch segmentation network is built to learn an expert for each source RSI. Second, a novel collaborative learning method with the cross-domain mixing strategy is proposed, to supplement the class information for each source while achieving the domain adaptation of each source–target pair. Third, a pseudolabel generation strategy is proposed to effectively combine the strengths of different experts, which can be flexibly applied to two cases where the source class union is equal to or includes the target class set. Fourth, a multiview-enhanced knowledge integration module is developed for high-level knowledge routing and transfer from multiple domains to target predictions. The experimental results of six different class settings on airborne and spaceborne RSIs show that the proposed method can effectively perform the multisource domain adaptation in the case of class asymmetry, and the obtained segmentation performance of target RSIs is significantly better than the existing relevant methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
limbo完成签到 ,获得积分10
1秒前
富贵发布了新的文献求助10
3秒前
3秒前
5秒前
6秒前
麻薯头头完成签到,获得积分10
7秒前
龙猫爱看书完成签到,获得积分10
11秒前
自由的青槐完成签到 ,获得积分10
12秒前
12秒前
15秒前
麻薯头头发布了新的文献求助10
15秒前
17秒前
撞飞整个世界的小海狸完成签到,获得积分10
20秒前
Fury发布了新的文献求助10
20秒前
21秒前
22秒前
nini完成签到,获得积分10
23秒前
中午发布了新的文献求助200
24秒前
哔哔完成签到,获得积分10
24秒前
道科数物发布了新的文献求助10
27秒前
minima1998发布了新的文献求助10
30秒前
30秒前
30秒前
科研通AI2S应助李政浩采纳,获得10
30秒前
背后归尘完成签到,获得积分10
33秒前
Denvir完成签到 ,获得积分10
33秒前
LZM完成签到,获得积分10
33秒前
33秒前
明理雨真发布了新的文献求助10
37秒前
Tao完成签到 ,获得积分10
38秒前
没有昵称发布了新的文献求助30
39秒前
小二郎应助研友_VZGvVn采纳,获得10
40秒前
45秒前
叶孤城发布了新的文献求助10
50秒前
53秒前
bbanshan完成签到,获得积分10
54秒前
田様应助隐形之玉采纳,获得10
54秒前
Anais完成签到,获得积分10
55秒前
24k医学僧完成签到,获得积分10
56秒前
57秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023