The electron transport chain of Shewanella oneidensis MR-1 can operate bidirectionally to enable microbial electrosynthesis

舍瓦内拉 电子传输链 阴极 电合成 氧化还原 化学 电子转移 电子受体 化学渗透 呼吸链 微生物燃料电池 阳极 生物物理学 光化学 化学工程 生物化学 无机化学 电化学 生物 电极 细菌 线粒体 ATP合酶 物理化学 遗传学 工程类
作者
Kathryne C. Ford,Michaela A. TerAvest
出处
期刊:Applied and Environmental Microbiology [American Society for Microbiology]
卷期号:90 (1) 被引量:1
标识
DOI:10.1128/aem.01387-23
摘要

ABSTRACT Extracellular electron transfer is a process by which bacterial cells can exchange electrons with a redox-active material located outside of the cell. In Shewanella oneidensis , this process is natively used to facilitate respiration using extracellular electron acceptors such as Fe(III) or an anode. Previously, it was demonstrated that this process can be used to drive the microbial electrosynthesis (MES) of 2,3-butanediol (2,3-BDO) in S. oneidensis exogenously expressing butanediol dehydrogenase (BDH). Electrons taken into the cell from a cathode are used to generate NADH, which in turn is used to reduce acetoin to 2,3-BDO via BDH. However, generating NADH via electron uptake from a cathode is energetically unfavorable, so NADH dehydrogenases couple the reaction to proton motive force. We therefore need to maintain the proton gradient across the membrane to sustain NADH production. This work explores accomplishing this task by bidirectional electron transfer, where electrons provided by the cathode go to both NADH formation and oxygen (O 2 ) reduction by oxidases. We show that oxidases use trace dissolved oxygen in a microaerobic bioelectrical chemical system (BES), and the translocation of protons across the membrane during O 2 reduction supports 2,3-BDO generation. Interestingly, this process is inhibited by high levels of dissolved oxygen in this system. In an aerated BES, O 2 molecules react with the strong reductant (cathode) to form reactive oxygen species, resulting in cell death. IMPORTANCE Microbial electrosynthesis (MES) is increasingly employed for the generation of specialty chemicals, such as biofuels, bioplastics, and cancer therapeutics. For these systems to be viable for industrial scale-up, it is important to understand the energetic requirements of the bacteria to mitigate unnecessary costs. This work demonstrates sustained production of an industrially relevant chemical driven by a cathode. Additionally, it optimizes a previously published system by removing any requirement for phototrophic energy, thereby removing the additional cost of providing a light source. We also demonstrate the severe impact of oxygen intrusion into bioelectrochemical systems, offering insight to future researchers aiming to work in an anaerobic environment. These studies provide insight into both the thermodynamics of electrosynthesis and the importance of the bioelectrochemical systems’ design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leinuo077完成签到,获得积分10
刚刚
3秒前
4秒前
ciooli完成签到,获得积分20
4秒前
林一存完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
能能发布了新的文献求助10
6秒前
英俊的鱼完成签到,获得积分10
7秒前
Jasper应助小猪啵比采纳,获得10
7秒前
谦让月饼完成签到 ,获得积分10
7秒前
8秒前
8秒前
科研小白完成签到,获得积分10
8秒前
8秒前
moonn完成签到,获得积分10
9秒前
DYF发布了新的文献求助10
10秒前
10秒前
jie关注了科研通微信公众号
10秒前
11秒前
11秒前
无尽夏完成签到,获得积分10
11秒前
白昼の月完成签到 ,获得积分0
11秒前
科研通AI2S应助Hbobo采纳,获得10
12秒前
NexusExplorer应助tier3采纳,获得10
12秒前
bluesmile完成签到,获得积分10
13秒前
好困应助Riggle G采纳,获得10
13秒前
小羊关注了科研通微信公众号
13秒前
13秒前
FreeRice发布了新的文献求助10
13秒前
13秒前
年轻的安珊完成签到,获得积分10
16秒前
Ashorecc发布了新的文献求助10
16秒前
三百一十四完成签到 ,获得积分10
18秒前
早上好发布了新的文献求助10
18秒前
郑159753发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助科研r采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655