Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting

计算机科学 外推法 多任务学习 任务(项目管理) 机器学习 水平衡 人工智能 结束语(心理学) 蒸散量 数学 统计 市场经济 生态学 管理 岩土工程 工程类 经济 生物
作者
Lu Li,Yongjiu Dai,Zhongwang Wei,Wei Shangguan,Yonggen Zhang,Nan Wei,Qingliang Li
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (1): 89-103 被引量:3
标识
DOI:10.1175/jhm-d-23-0073.1
摘要

Abstract Accurate prediction of hydrological variables (HVs) is critical for understanding hydrological processes. Deep learning (DL) models have shown excellent forecasting abilities for different HVs. However, most DL models typically predicted HVs independently, without satisfying the principle of water balance. This missed the interactions between different HVs in the hydrological system and the underlying physical rules. In this study, we developed a DL model based on multitask learning and hybrid physically constrained schemes to simultaneously forecast soil moisture, evapotranspiration, and runoff. The models were trained using ERA5-Land data, which have water budget closure. We thoroughly assessed the advantages of the multitask framework and the proposed constrained schemes. Results showed that multitask models with different loss-weighted strategies produced comparable or better performance compared to the single-task model. The multitask model with a scaling factor of 5 achieved the best among all multitask models and performed better than the single-task model over 70.5% of grids. In addition, the hybrid constrained scheme took advantage of both soft and hard constrained models, providing physically consistent predictions with better model performance. The hybrid constrained models performed the best among different constrained models in terms of both general and extreme performance. Moreover, the hybrid model was affected the least as the training data were artificially reduced, and provided better spatiotemporal extrapolation ability under different artificial prediction challenges. These findings suggest that the hybrid model provides better performance compared to previously reported constrained models when facing limited training data and extrapolation challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
wzhang发布了新的文献求助10
3秒前
兆吉完成签到 ,获得积分10
5秒前
5秒前
叶落无痕、完成签到,获得积分10
6秒前
雨后完成签到 ,获得积分10
9秒前
稷下听风完成签到,获得积分10
10秒前
10秒前
yf发布了新的文献求助50
12秒前
finger完成签到,获得积分10
12秒前
酸甜橙汁完成签到 ,获得积分10
12秒前
专注的雪完成签到 ,获得积分10
12秒前
清脆的葵阴完成签到 ,获得积分10
13秒前
roger完成签到,获得积分10
13秒前
。。完成签到 ,获得积分10
13秒前
tfr06完成签到,获得积分10
14秒前
xing完成签到,获得积分10
14秒前
ming发布了新的文献求助20
15秒前
迷人的鞭炮完成签到,获得积分10
15秒前
唯手熟尔完成签到,获得积分10
16秒前
16秒前
刘柳完成签到 ,获得积分10
17秒前
杨玲完成签到 ,获得积分10
19秒前
追风筝的少女完成签到 ,获得积分10
19秒前
19秒前
英俊的铭应助唐t采纳,获得10
20秒前
无尘完成签到 ,获得积分10
20秒前
想吃糖葫芦完成签到 ,获得积分10
20秒前
莃莃莃喜欢你完成签到 ,获得积分10
21秒前
Alvin完成签到,获得积分10
21秒前
22秒前
Wen929完成签到 ,获得积分10
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
结实的老虎完成签到,获得积分10
24秒前
zwww完成签到,获得积分10
24秒前
CharlieYue发布了新的文献求助10
25秒前
周周发布了新的文献求助50
26秒前
Lychee完成签到 ,获得积分10
27秒前
SKD发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432918
求助须知:如何正确求助?哪些是违规求助? 4545389
关于积分的说明 14195696
捐赠科研通 4464890
什么是DOI,文献DOI怎么找? 2447318
邀请新用户注册赠送积分活动 1438600
关于科研通互助平台的介绍 1415620