Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting

计算机科学 外推法 多任务学习 任务(项目管理) 机器学习 水平衡 人工智能 结束语(心理学) 蒸散量 数学 统计 市场经济 生态学 管理 岩土工程 工程类 经济 生物
作者
Lu Li,Yongjiu Dai,Zhongwang Wei,Wei Shangguan,Yonggen Zhang,Nan Wei,Qingliang Li
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (1): 89-103 被引量:3
标识
DOI:10.1175/jhm-d-23-0073.1
摘要

Abstract Accurate prediction of hydrological variables (HVs) is critical for understanding hydrological processes. Deep learning (DL) models have shown excellent forecasting abilities for different HVs. However, most DL models typically predicted HVs independently, without satisfying the principle of water balance. This missed the interactions between different HVs in the hydrological system and the underlying physical rules. In this study, we developed a DL model based on multitask learning and hybrid physically constrained schemes to simultaneously forecast soil moisture, evapotranspiration, and runoff. The models were trained using ERA5-Land data, which have water budget closure. We thoroughly assessed the advantages of the multitask framework and the proposed constrained schemes. Results showed that multitask models with different loss-weighted strategies produced comparable or better performance compared to the single-task model. The multitask model with a scaling factor of 5 achieved the best among all multitask models and performed better than the single-task model over 70.5% of grids. In addition, the hybrid constrained scheme took advantage of both soft and hard constrained models, providing physically consistent predictions with better model performance. The hybrid constrained models performed the best among different constrained models in terms of both general and extreme performance. Moreover, the hybrid model was affected the least as the training data were artificially reduced, and provided better spatiotemporal extrapolation ability under different artificial prediction challenges. These findings suggest that the hybrid model provides better performance compared to previously reported constrained models when facing limited training data and extrapolation challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听健柏发布了新的文献求助10
刚刚
刚刚
DrSong发布了新的文献求助30
刚刚
Jasper应助123采纳,获得10
刚刚
让我再眯一会儿完成签到 ,获得积分10
刚刚
真实的麦片完成签到,获得积分10
刚刚
Vivifang应助赵哼哼采纳,获得10
刚刚
脑洞疼应助典雅的俊驰采纳,获得10
1秒前
DDDDgx发布了新的文献求助10
1秒前
Hello应助玊尔采纳,获得10
1秒前
共享精神应助小吉麻麻采纳,获得10
1秒前
sss完成签到,获得积分10
1秒前
hzy发布了新的文献求助10
2秒前
虚室生白完成签到,获得积分10
2秒前
好好发布了新的文献求助10
2秒前
2秒前
2秒前
王小小发布了新的文献求助10
3秒前
4秒前
漂亮钢铁侠完成签到,获得积分10
4秒前
李爱国应助乐观的代桃采纳,获得10
4秒前
4秒前
5秒前
飞流直下完成签到 ,获得积分20
5秒前
善学以致用应助啊懂采纳,获得10
5秒前
共享精神应助YMing采纳,获得10
6秒前
科研通AI2S应助乌鱼子采纳,获得10
6秒前
vince完成签到 ,获得积分10
7秒前
8秒前
8秒前
安静的飞薇完成签到,获得积分10
8秒前
8秒前
8秒前
fun完成签到,获得积分10
8秒前
whc发布了新的文献求助10
9秒前
9秒前
小蘑菇应助斯文明杰采纳,获得10
9秒前
活力的静曼完成签到,获得积分10
10秒前
liucheng发布了新的文献求助10
10秒前
无花果应助kk采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853