Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting

计算机科学 外推法 多任务学习 任务(项目管理) 机器学习 水平衡 人工智能 结束语(心理学) 蒸散量 数学 统计 市场经济 生态学 管理 岩土工程 工程类 经济 生物
作者
Lu Li,Yongjiu Dai,Zhongwang Wei,Wei Shangguan,Yonggen Zhang,Nan Wei,Qingliang Li
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (1): 89-103 被引量:3
标识
DOI:10.1175/jhm-d-23-0073.1
摘要

Abstract Accurate prediction of hydrological variables (HVs) is critical for understanding hydrological processes. Deep learning (DL) models have shown excellent forecasting abilities for different HVs. However, most DL models typically predicted HVs independently, without satisfying the principle of water balance. This missed the interactions between different HVs in the hydrological system and the underlying physical rules. In this study, we developed a DL model based on multitask learning and hybrid physically constrained schemes to simultaneously forecast soil moisture, evapotranspiration, and runoff. The models were trained using ERA5-Land data, which have water budget closure. We thoroughly assessed the advantages of the multitask framework and the proposed constrained schemes. Results showed that multitask models with different loss-weighted strategies produced comparable or better performance compared to the single-task model. The multitask model with a scaling factor of 5 achieved the best among all multitask models and performed better than the single-task model over 70.5% of grids. In addition, the hybrid constrained scheme took advantage of both soft and hard constrained models, providing physically consistent predictions with better model performance. The hybrid constrained models performed the best among different constrained models in terms of both general and extreme performance. Moreover, the hybrid model was affected the least as the training data were artificially reduced, and provided better spatiotemporal extrapolation ability under different artificial prediction challenges. These findings suggest that the hybrid model provides better performance compared to previously reported constrained models when facing limited training data and extrapolation challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点心完成签到,获得积分10
刚刚
刚刚
刚刚
共享精神应助zml采纳,获得10
刚刚
1秒前
小蘑菇应助清城采纳,获得10
1秒前
1秒前
斯文败类应助yyl采纳,获得10
2秒前
3秒前
lllwhannah发布了新的文献求助10
3秒前
qweqwe发布了新的文献求助10
5秒前
serafinaX发布了新的文献求助10
5秒前
研友_VZG7GZ应助易烊干洗采纳,获得10
5秒前
5秒前
王大禹完成签到,获得积分10
6秒前
Lynn发布了新的文献求助10
6秒前
7秒前
莫莫发布了新的文献求助10
7秒前
8秒前
CipherSage应助017采纳,获得10
8秒前
虚心的眼神完成签到,获得积分10
9秒前
zml完成签到,获得积分10
9秒前
张张张完成签到,获得积分10
10秒前
面包小狗完成签到 ,获得积分10
10秒前
11秒前
qweqwe完成签到,获得积分10
11秒前
12秒前
12秒前
冷酷以太完成签到,获得积分10
12秒前
笑点低的怀莲完成签到,获得积分10
13秒前
zml发布了新的文献求助10
13秒前
myyy完成签到 ,获得积分10
14秒前
16秒前
清城发布了新的文献求助10
16秒前
TomTonyy发布了新的文献求助10
16秒前
易烊干洗发布了新的文献求助10
16秒前
清秀惜霜关注了科研通微信公众号
18秒前
18秒前
趣多多发布了新的文献求助10
19秒前
huco发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143795
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814544
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627230
版权声明 601419