已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting

计算机科学 外推法 多任务学习 任务(项目管理) 机器学习 水平衡 人工智能 结束语(心理学) 蒸散量 数学 统计 市场经济 生态学 管理 岩土工程 工程类 经济 生物
作者
Lu Li,Yongjiu Dai,Zhongwang Wei,Wei Shangguan,Yonggen Zhang,Nan Wei,Qingliang Li
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (1): 89-103 被引量:3
标识
DOI:10.1175/jhm-d-23-0073.1
摘要

Abstract Accurate prediction of hydrological variables (HVs) is critical for understanding hydrological processes. Deep learning (DL) models have shown excellent forecasting abilities for different HVs. However, most DL models typically predicted HVs independently, without satisfying the principle of water balance. This missed the interactions between different HVs in the hydrological system and the underlying physical rules. In this study, we developed a DL model based on multitask learning and hybrid physically constrained schemes to simultaneously forecast soil moisture, evapotranspiration, and runoff. The models were trained using ERA5-Land data, which have water budget closure. We thoroughly assessed the advantages of the multitask framework and the proposed constrained schemes. Results showed that multitask models with different loss-weighted strategies produced comparable or better performance compared to the single-task model. The multitask model with a scaling factor of 5 achieved the best among all multitask models and performed better than the single-task model over 70.5% of grids. In addition, the hybrid constrained scheme took advantage of both soft and hard constrained models, providing physically consistent predictions with better model performance. The hybrid constrained models performed the best among different constrained models in terms of both general and extreme performance. Moreover, the hybrid model was affected the least as the training data were artificially reduced, and provided better spatiotemporal extrapolation ability under different artificial prediction challenges. These findings suggest that the hybrid model provides better performance compared to previously reported constrained models when facing limited training data and extrapolation challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
3秒前
鱼羊明完成签到 ,获得积分10
3秒前
泥嚎发布了新的文献求助10
4秒前
6秒前
闪闪香菱发布了新的文献求助10
6秒前
6秒前
FashionBoy应助宋玮采纳,获得10
7秒前
10秒前
kevinqpp发布了新的文献求助10
12秒前
kejiyn完成签到,获得积分10
15秒前
15秒前
动听紫文完成签到,获得积分10
16秒前
我是熊大完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
相龙完成签到,获得积分10
17秒前
xiaolei001应助zgz采纳,获得10
18秒前
梨花诗发布了新的文献求助10
18秒前
宋玮完成签到,获得积分10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
18635986106应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
18635986106应助科研通管家采纳,获得10
18秒前
初光应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
19秒前
温暖伟祺完成签到,获得积分10
19秒前
魔梓菌完成签到 ,获得积分10
20秒前
mmmio发布了新的文献求助10
20秒前
21秒前
qu发布了新的文献求助30
23秒前
宋玮发布了新的文献求助10
26秒前
26秒前
oyfff完成签到 ,获得积分10
26秒前
27秒前
nono发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493371
求助须知:如何正确求助?哪些是违规求助? 4591376
关于积分的说明 14433721
捐赠科研通 4523887
什么是DOI,文献DOI怎么找? 2478514
邀请新用户注册赠送积分活动 1463494
关于科研通互助平台的介绍 1436308