Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting

计算机科学 外推法 多任务学习 任务(项目管理) 机器学习 水平衡 人工智能 结束语(心理学) 蒸散量 数学 统计 市场经济 生态学 管理 岩土工程 工程类 经济 生物
作者
Lu Li,Yongjiu Dai,Zhongwang Wei,Wei Shangguan,Yonggen Zhang,Nan Wei,Qingliang Li
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (1): 89-103 被引量:3
标识
DOI:10.1175/jhm-d-23-0073.1
摘要

Abstract Accurate prediction of hydrological variables (HVs) is critical for understanding hydrological processes. Deep learning (DL) models have shown excellent forecasting abilities for different HVs. However, most DL models typically predicted HVs independently, without satisfying the principle of water balance. This missed the interactions between different HVs in the hydrological system and the underlying physical rules. In this study, we developed a DL model based on multitask learning and hybrid physically constrained schemes to simultaneously forecast soil moisture, evapotranspiration, and runoff. The models were trained using ERA5-Land data, which have water budget closure. We thoroughly assessed the advantages of the multitask framework and the proposed constrained schemes. Results showed that multitask models with different loss-weighted strategies produced comparable or better performance compared to the single-task model. The multitask model with a scaling factor of 5 achieved the best among all multitask models and performed better than the single-task model over 70.5% of grids. In addition, the hybrid constrained scheme took advantage of both soft and hard constrained models, providing physically consistent predictions with better model performance. The hybrid constrained models performed the best among different constrained models in terms of both general and extreme performance. Moreover, the hybrid model was affected the least as the training data were artificially reduced, and provided better spatiotemporal extrapolation ability under different artificial prediction challenges. These findings suggest that the hybrid model provides better performance compared to previously reported constrained models when facing limited training data and extrapolation challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助豆觉子采纳,获得10
2秒前
2秒前
3秒前
4秒前
老迟到的芹菜完成签到,获得积分10
5秒前
呗呗兔发布了新的文献求助10
6秒前
chanyelo发布了新的文献求助10
7秒前
曾哥帅完成签到 ,获得积分10
8秒前
赘婿应助swallow采纳,获得10
9秒前
王立娅完成签到,获得积分10
9秒前
福尔摩环发布了新的文献求助10
10秒前
10秒前
10秒前
在宇宙遛弯儿完成签到 ,获得积分10
12秒前
12秒前
14秒前
14秒前
甜甜醉香发布了新的文献求助10
15秒前
王立娅发布了新的文献求助50
15秒前
ww发布了新的文献求助10
18秒前
小猛人发布了新的文献求助10
18秒前
大个应助lzzmy采纳,获得10
19秒前
离欢完成签到,获得积分20
20秒前
20秒前
刘国建郭菱香完成签到,获得积分10
21秒前
22秒前
酷波er应助甜甜醉香采纳,获得10
24秒前
所所应助刘国建郭菱香采纳,获得10
25秒前
完美世界应助naturehome采纳,获得10
25秒前
Sledge完成签到,获得积分10
25秒前
和谐诗双发布了新的文献求助10
25秒前
L_Zoe_D02发布了新的文献求助10
26秒前
YY发布了新的文献求助10
26秒前
27秒前
krinnme完成签到,获得积分20
28秒前
呗呗兔关注了科研通微信公众号
28秒前
一味地丶逞强完成签到,获得积分10
29秒前
29秒前
松111发布了新的文献求助10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373754
求助须知:如何正确求助?哪些是违规求助? 4499770
关于积分的说明 14007232
捐赠科研通 4406707
什么是DOI,文献DOI怎么找? 2420672
邀请新用户注册赠送积分活动 1413421
关于科研通互助平台的介绍 1389992