Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting

计算机科学 外推法 多任务学习 任务(项目管理) 机器学习 水平衡 人工智能 结束语(心理学) 蒸散量 数学 统计 市场经济 生态学 管理 岩土工程 工程类 经济 生物
作者
Lu Li,Yongjiu Dai,Zhongwang Wei,Wei Shangguan,Yonggen Zhang,Nan Wei,Qingliang Li
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (1): 89-103 被引量:3
标识
DOI:10.1175/jhm-d-23-0073.1
摘要

Abstract Accurate prediction of hydrological variables (HVs) is critical for understanding hydrological processes. Deep learning (DL) models have shown excellent forecasting abilities for different HVs. However, most DL models typically predicted HVs independently, without satisfying the principle of water balance. This missed the interactions between different HVs in the hydrological system and the underlying physical rules. In this study, we developed a DL model based on multitask learning and hybrid physically constrained schemes to simultaneously forecast soil moisture, evapotranspiration, and runoff. The models were trained using ERA5-Land data, which have water budget closure. We thoroughly assessed the advantages of the multitask framework and the proposed constrained schemes. Results showed that multitask models with different loss-weighted strategies produced comparable or better performance compared to the single-task model. The multitask model with a scaling factor of 5 achieved the best among all multitask models and performed better than the single-task model over 70.5% of grids. In addition, the hybrid constrained scheme took advantage of both soft and hard constrained models, providing physically consistent predictions with better model performance. The hybrid constrained models performed the best among different constrained models in terms of both general and extreme performance. Moreover, the hybrid model was affected the least as the training data were artificially reduced, and provided better spatiotemporal extrapolation ability under different artificial prediction challenges. These findings suggest that the hybrid model provides better performance compared to previously reported constrained models when facing limited training data and extrapolation challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郭发布了新的文献求助10
1秒前
Ava应助punch采纳,获得10
2秒前
rosid完成签到,获得积分10
2秒前
zhuangbaobao发布了新的文献求助10
3秒前
荷兰香猪发布了新的文献求助10
3秒前
3秒前
善学以致用应助北极星采纳,获得10
4秒前
bkagyin应助jjjjjjj采纳,获得10
4秒前
席茹妖完成签到,获得积分10
4秒前
万能图书馆应助小辛采纳,获得10
5秒前
5秒前
5秒前
负责的皮卡丘应助麦子采纳,获得10
5秒前
6秒前
科研通AI6应助淡定的以寒采纳,获得10
8秒前
8秒前
8秒前
告元完成签到,获得积分10
8秒前
BTW发布了新的文献求助10
9秒前
9秒前
mang完成签到 ,获得积分10
9秒前
guo发布了新的文献求助10
9秒前
9秒前
10秒前
科目三应助拼搏的帆布鞋采纳,获得10
10秒前
小灰灰完成签到,获得积分10
11秒前
汉堡包应助小奇采纳,获得10
11秒前
11秒前
11秒前
12秒前
Lamis完成签到 ,获得积分10
12秒前
tgoutgou完成签到,获得积分10
13秒前
13秒前
min发布了新的文献求助10
13秒前
小灰灰发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
无奈夏瑶发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420251
求助须知:如何正确求助?哪些是违规求助? 4535385
关于积分的说明 14149881
捐赠科研通 4452462
什么是DOI,文献DOI怎么找? 2442152
邀请新用户注册赠送积分活动 1433648
关于科研通互助平台的介绍 1410945