Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting

计算机科学 外推法 多任务学习 任务(项目管理) 机器学习 水平衡 人工智能 结束语(心理学) 蒸散量 数学 统计 市场经济 生态学 管理 岩土工程 工程类 经济 生物
作者
Lu Li,Yongjiu Dai,Zhongwang Wei,Wei Shangguan,Yonggen Zhang,Nan Wei,Qingliang Li
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (1): 89-103 被引量:3
标识
DOI:10.1175/jhm-d-23-0073.1
摘要

Abstract Accurate prediction of hydrological variables (HVs) is critical for understanding hydrological processes. Deep learning (DL) models have shown excellent forecasting abilities for different HVs. However, most DL models typically predicted HVs independently, without satisfying the principle of water balance. This missed the interactions between different HVs in the hydrological system and the underlying physical rules. In this study, we developed a DL model based on multitask learning and hybrid physically constrained schemes to simultaneously forecast soil moisture, evapotranspiration, and runoff. The models were trained using ERA5-Land data, which have water budget closure. We thoroughly assessed the advantages of the multitask framework and the proposed constrained schemes. Results showed that multitask models with different loss-weighted strategies produced comparable or better performance compared to the single-task model. The multitask model with a scaling factor of 5 achieved the best among all multitask models and performed better than the single-task model over 70.5% of grids. In addition, the hybrid constrained scheme took advantage of both soft and hard constrained models, providing physically consistent predictions with better model performance. The hybrid constrained models performed the best among different constrained models in terms of both general and extreme performance. Moreover, the hybrid model was affected the least as the training data were artificially reduced, and provided better spatiotemporal extrapolation ability under different artificial prediction challenges. These findings suggest that the hybrid model provides better performance compared to previously reported constrained models when facing limited training data and extrapolation challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助面包噎人采纳,获得10
刚刚
颖南婉发布了新的文献求助10
1秒前
大个应助糊涂的剑采纳,获得10
1秒前
Japrin完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
clivia完成签到,获得积分10
2秒前
crazyfish完成签到,获得积分10
2秒前
文艺傲松完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
闪电完成签到,获得积分10
3秒前
澄桦发布了新的文献求助10
3秒前
3秒前
wyj完成签到,获得积分10
3秒前
欣欣子发布了新的文献求助10
4秒前
wer完成签到 ,获得积分10
4秒前
4秒前
领导范儿应助onmyway采纳,获得10
4秒前
可爱的函函应助wanglan采纳,获得10
5秒前
胡凤凰完成签到,获得积分10
5秒前
6秒前
隐形曼青应助wsx采纳,获得10
6秒前
6秒前
urologywang发布了新的文献求助10
6秒前
Jasper应助KaleemUllah采纳,获得10
7秒前
7秒前
高贵的惠完成签到 ,获得积分10
7秒前
9秒前
9秒前
乔尔发布了新的文献求助20
9秒前
简单的乐驹完成签到,获得积分10
9秒前
you完成签到 ,获得积分10
11秒前
怕黑向秋发布了新的文献求助10
11秒前
桐安发布了新的文献求助10
12秒前
13秒前
滕达完成签到,获得积分10
13秒前
13秒前
14秒前
受伤的奎完成签到,获得积分20
14秒前
Ruuo616完成签到 ,获得积分10
14秒前
搜集达人应助寒冷代双采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675369
求助须知:如何正确求助?哪些是违规求助? 4945575
关于积分的说明 15152710
捐赠科研通 4834585
什么是DOI,文献DOI怎么找? 2589541
邀请新用户注册赠送积分活动 1543247
关于科研通互助平台的介绍 1501131