Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting

计算机科学 外推法 多任务学习 任务(项目管理) 机器学习 水平衡 人工智能 结束语(心理学) 蒸散量 数学 统计 市场经济 生态学 管理 岩土工程 工程类 经济 生物
作者
Lu Li,Yongjiu Dai,Zhongwang Wei,Wei Shangguan,Yonggen Zhang,Nan Wei,Qingliang Li
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (1): 89-103 被引量:3
标识
DOI:10.1175/jhm-d-23-0073.1
摘要

Abstract Accurate prediction of hydrological variables (HVs) is critical for understanding hydrological processes. Deep learning (DL) models have shown excellent forecasting abilities for different HVs. However, most DL models typically predicted HVs independently, without satisfying the principle of water balance. This missed the interactions between different HVs in the hydrological system and the underlying physical rules. In this study, we developed a DL model based on multitask learning and hybrid physically constrained schemes to simultaneously forecast soil moisture, evapotranspiration, and runoff. The models were trained using ERA5-Land data, which have water budget closure. We thoroughly assessed the advantages of the multitask framework and the proposed constrained schemes. Results showed that multitask models with different loss-weighted strategies produced comparable or better performance compared to the single-task model. The multitask model with a scaling factor of 5 achieved the best among all multitask models and performed better than the single-task model over 70.5% of grids. In addition, the hybrid constrained scheme took advantage of both soft and hard constrained models, providing physically consistent predictions with better model performance. The hybrid constrained models performed the best among different constrained models in terms of both general and extreme performance. Moreover, the hybrid model was affected the least as the training data were artificially reduced, and provided better spatiotemporal extrapolation ability under different artificial prediction challenges. These findings suggest that the hybrid model provides better performance compared to previously reported constrained models when facing limited training data and extrapolation challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦向梦发布了新的文献求助10
刚刚
lxmccc发布了新的文献求助10
刚刚
yyl完成签到 ,获得积分10
刚刚
小马甲应助爱笑的煎饼采纳,获得10
1秒前
1秒前
酷波er应助欢呼冷亦采纳,获得10
2秒前
研友_Z63G18完成签到 ,获得积分10
2秒前
玉米之路发布了新的文献求助10
2秒前
zhy完成签到,获得积分20
3秒前
4秒前
完美世界应助星星蘸大酱采纳,获得10
4秒前
Peng完成签到,获得积分10
4秒前
求助人员应助ali采纳,获得30
4秒前
李健的粉丝团团长应助GTY采纳,获得10
4秒前
4秒前
搞怪慕凝完成签到,获得积分10
4秒前
4秒前
爆米花应助mimosal采纳,获得10
5秒前
orixero应助wwk采纳,获得10
6秒前
6秒前
6秒前
7秒前
passion发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
核桃发布了新的文献求助10
8秒前
8秒前
zyw发布了新的文献求助10
9秒前
9秒前
sbdxlwyd完成签到 ,获得积分10
10秒前
10秒前
11秒前
12秒前
七慕凉应助大灯泡采纳,获得10
12秒前
Queena发布了新的文献求助10
12秒前
南陌故人发布了新的文献求助10
12秒前
科研通AI6应助years采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615168
求助须知:如何正确求助?哪些是违规求助? 4700058
关于积分的说明 14906318
捐赠科研通 4741317
什么是DOI,文献DOI怎么找? 2547956
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473774