Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting

计算机科学 外推法 多任务学习 任务(项目管理) 机器学习 水平衡 人工智能 结束语(心理学) 蒸散量 数学 统计 市场经济 生态学 管理 岩土工程 工程类 经济 生物
作者
Lu Li,Yongjiu Dai,Zhongwang Wei,Wei Shangguan,Yonggen Zhang,Nan Wei,Qingliang Li
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:25 (1): 89-103 被引量:3
标识
DOI:10.1175/jhm-d-23-0073.1
摘要

Abstract Accurate prediction of hydrological variables (HVs) is critical for understanding hydrological processes. Deep learning (DL) models have shown excellent forecasting abilities for different HVs. However, most DL models typically predicted HVs independently, without satisfying the principle of water balance. This missed the interactions between different HVs in the hydrological system and the underlying physical rules. In this study, we developed a DL model based on multitask learning and hybrid physically constrained schemes to simultaneously forecast soil moisture, evapotranspiration, and runoff. The models were trained using ERA5-Land data, which have water budget closure. We thoroughly assessed the advantages of the multitask framework and the proposed constrained schemes. Results showed that multitask models with different loss-weighted strategies produced comparable or better performance compared to the single-task model. The multitask model with a scaling factor of 5 achieved the best among all multitask models and performed better than the single-task model over 70.5% of grids. In addition, the hybrid constrained scheme took advantage of both soft and hard constrained models, providing physically consistent predictions with better model performance. The hybrid constrained models performed the best among different constrained models in terms of both general and extreme performance. Moreover, the hybrid model was affected the least as the training data were artificially reduced, and provided better spatiotemporal extrapolation ability under different artificial prediction challenges. These findings suggest that the hybrid model provides better performance compared to previously reported constrained models when facing limited training data and extrapolation challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
情怀应助猪猪hero采纳,获得10
2秒前
qikkk发布了新的文献求助200
2秒前
2秒前
大个应助悦耳人生采纳,获得10
3秒前
CodeCraft应助anasy采纳,获得10
4秒前
5秒前
5秒前
淡淡冰薇完成签到,获得积分10
6秒前
xz完成签到 ,获得积分10
6秒前
6秒前
边晓梅发布了新的文献求助10
7秒前
7秒前
大模型应助小野菌采纳,获得10
8秒前
科研怪人完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
Yatpome发布了新的文献求助30
10秒前
11秒前
11秒前
查丽发布了新的文献求助10
11秒前
kira发布了新的文献求助10
12秒前
诸葛天完成签到 ,获得积分10
12秒前
善学以致用应助quora采纳,获得10
13秒前
学术版7e发布了新的文献求助10
14秒前
14秒前
大个应助777采纳,获得10
14秒前
Yy发布了新的文献求助30
15秒前
结实的梦山完成签到,获得积分10
15秒前
认真飞瑶发布了新的文献求助10
15秒前
zhangcdoctor发布了新的文献求助10
15秒前
猪猪hero发布了新的文献求助10
16秒前
一梦倾城完成签到,获得积分10
16秒前
孤狼完成签到,获得积分10
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578