Real-Time Passive Seismic Interferometry with Deep Transfer Learning

干涉测量 遥感 地质学 计算机科学 学习迁移 人工智能 光学 物理
作者
Liyun Ma,Liguo Han,Qiang Feng,Xin Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3365688
摘要

The passive seismic interferometry, harnessing ambient noise or unconventional seismic sources, has garnered widespread attention in the fields of Earth science and resource exploration. Conventional seismic interferometry requires several assumptions to be satisfied, including uniform distribution of subsurface sources, an adequate number of sources, and long recording periods. However, these assumptions often fall short in real-world scenarios, leading to suboptimal reconstruction quality and subsequently impacting imaging results. Therefore, we propose a passive seismic interferometry method with deep transfer learning. This method can extract real-time empirical Green’s functions directly from noisy datasets without prior preprocessing. Crucially, this technique extends beyond mere data retrieval, demonstrating the competence to robustly reconstruct the entire wavefield. We establish a joint Transformer-CNN network and conduct supervised training on intricate velocity models. Subsequently, we employ transfer learning to fine-tune the model, adapting it to new data that differ from the training dataset. Notably, our method requires only a small amount of data and can be applied to other velocity models without additional training for new neural networks. The validity of our method is demonstrated through a series of numerical experiments. In contrast to conventional method, the real-time passive seismic interferometry achieves enhanced efficiency and greater accuracy in reconstructing subsurface structural response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助飞0802采纳,获得10
刚刚
我是老大应助Kane采纳,获得10
刚刚
hh发布了新的文献求助10
1秒前
etheneee完成签到,获得积分10
4秒前
无花果应助能干念双采纳,获得10
4秒前
5秒前
6秒前
xiaowannamoney完成签到,获得积分10
6秒前
呆呆是一条鱼完成签到,获得积分10
7秒前
zlll完成签到,获得积分10
7秒前
各自cc完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
ailu完成签到 ,获得积分10
9秒前
MINMIN完成签到,获得积分10
10秒前
深情安青应助21采纳,获得10
10秒前
从文不再啦完成签到,获得积分20
10秒前
Answer发布了新的文献求助10
11秒前
一只好果子完成签到,获得积分10
12秒前
慕青应助各自cc采纳,获得10
13秒前
15秒前
16秒前
阿元发布了新的文献求助10
16秒前
从文不再啦关注了科研通微信公众号
19秒前
20秒前
22秒前
Akim应助123采纳,获得10
22秒前
wwdd完成签到,获得积分10
25秒前
直率千青完成签到,获得积分10
26秒前
能干念双发布了新的文献求助10
26秒前
潇洒小高完成签到,获得积分10
26秒前
27秒前
钟是一梦完成签到,获得积分10
30秒前
围城完成签到 ,获得积分10
33秒前
yang完成签到,获得积分10
35秒前
35秒前
丘比特应助茕人无尤采纳,获得10
36秒前
情怀应助苗一夫采纳,获得10
36秒前
镜哥完成签到,获得积分10
38秒前
41秒前
kunkun完成签到,获得积分10
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500524
关于积分的说明 11099808
捐赠科研通 3230997
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869904
科研通“疑难数据库(出版商)”最低求助积分说明 801717