Real-Time Passive Seismic Interferometry with Deep Transfer Learning

干涉测量 遥感 地质学 计算机科学 学习迁移 人工智能 光学 物理
作者
Liyun Ma,Liguo Han,Qiang Feng,Xin Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3365688
摘要

The passive seismic interferometry, harnessing ambient noise or unconventional seismic sources, has garnered widespread attention in the fields of Earth science and resource exploration. Conventional seismic interferometry requires several assumptions to be satisfied, including uniform distribution of subsurface sources, an adequate number of sources, and long recording periods. However, these assumptions often fall short in real-world scenarios, leading to suboptimal reconstruction quality and subsequently impacting imaging results. Therefore, we propose a passive seismic interferometry method with deep transfer learning. This method can extract real-time empirical Green’s functions directly from noisy datasets without prior preprocessing. Crucially, this technique extends beyond mere data retrieval, demonstrating the competence to robustly reconstruct the entire wavefield. We establish a joint Transformer-CNN network and conduct supervised training on intricate velocity models. Subsequently, we employ transfer learning to fine-tune the model, adapting it to new data that differ from the training dataset. Notably, our method requires only a small amount of data and can be applied to other velocity models without additional training for new neural networks. The validity of our method is demonstrated through a series of numerical experiments. In contrast to conventional method, the real-time passive seismic interferometry achieves enhanced efficiency and greater accuracy in reconstructing subsurface structural response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有魅力哈密瓜完成签到,获得积分10
1秒前
gougoudy完成签到,获得积分20
1秒前
吃面包的熊猫完成签到,获得积分10
1秒前
孙一雯完成签到,获得积分10
3秒前
李健应助hhh采纳,获得10
3秒前
七七发布了新的文献求助20
3秒前
hu970发布了新的文献求助10
3秒前
牧海冬发布了新的文献求助10
3秒前
可颂发布了新的文献求助10
3秒前
情怀应助后知后觉采纳,获得10
3秒前
嗡嗡完成签到,获得积分10
3秒前
优雅的琳完成签到,获得积分20
3秒前
迷路安阳完成签到,获得积分10
3秒前
Anonymous完成签到,获得积分10
4秒前
4秒前
小蘑菇应助自然采纳,获得10
5秒前
伞兵龙完成签到,获得积分10
5秒前
5秒前
西安小小朱完成签到,获得积分10
5秒前
5秒前
6秒前
小二郎应助打工人章鱼哥采纳,获得10
6秒前
优雅的琳发布了新的文献求助10
6秒前
Niar完成签到 ,获得积分10
6秒前
6秒前
7秒前
shuimo521发布了新的文献求助10
7秒前
脑洞疼应助眯眯眼的老鼠采纳,获得10
7秒前
所所应助小离采纳,获得10
7秒前
我是老大应助杨天水采纳,获得10
7秒前
woodheart完成签到,获得积分10
8秒前
8秒前
JamesPei应助miaoww采纳,获得10
8秒前
王王完成签到,获得积分10
8秒前
Evelyn完成签到,获得积分10
8秒前
cxt1346完成签到 ,获得积分10
8秒前
bkagyin应助孙一雯采纳,获得30
9秒前
顺心迎南完成签到,获得积分20
9秒前
Emma完成签到,获得积分10
9秒前
CodeCraft应助微笑鹤采纳,获得11
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672