重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Real-Time Passive Seismic Interferometry with Deep Transfer Learning

干涉测量 遥感 地质学 计算机科学 学习迁移 人工智能 光学 物理
作者
Liyun Ma,Liguo Han,Qiang Feng,Xin Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3365688
摘要

The passive seismic interferometry, harnessing ambient noise or unconventional seismic sources, has garnered widespread attention in the fields of Earth science and resource exploration. Conventional seismic interferometry requires several assumptions to be satisfied, including uniform distribution of subsurface sources, an adequate number of sources, and long recording periods. However, these assumptions often fall short in real-world scenarios, leading to suboptimal reconstruction quality and subsequently impacting imaging results. Therefore, we propose a passive seismic interferometry method with deep transfer learning. This method can extract real-time empirical Green’s functions directly from noisy datasets without prior preprocessing. Crucially, this technique extends beyond mere data retrieval, demonstrating the competence to robustly reconstruct the entire wavefield. We establish a joint Transformer-CNN network and conduct supervised training on intricate velocity models. Subsequently, we employ transfer learning to fine-tune the model, adapting it to new data that differ from the training dataset. Notably, our method requires only a small amount of data and can be applied to other velocity models without additional training for new neural networks. The validity of our method is demonstrated through a series of numerical experiments. In contrast to conventional method, the real-time passive seismic interferometry achieves enhanced efficiency and greater accuracy in reconstructing subsurface structural response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助华国锋采纳,获得30
1秒前
小告白完成签到,获得积分10
1秒前
JustXing完成签到,获得积分20
2秒前
英俊的铭应助光亮翠风采纳,获得10
2秒前
3秒前
4秒前
6秒前
Andy完成签到,获得积分10
6秒前
自觉冰巧发布了新的文献求助10
6秒前
可爱的函函应助cheng采纳,获得10
7秒前
jiaying发布了新的文献求助10
7秒前
8秒前
8秒前
二中所长发布了新的文献求助10
9秒前
HHY完成签到,获得积分10
9秒前
不安的采白完成签到,获得积分10
9秒前
鸽子完成签到,获得积分10
10秒前
11秒前
auguscai发布了新的文献求助10
11秒前
SmileLin发布了新的文献求助10
12秒前
Hello应助怕孤独的鸿采纳,获得10
12秒前
treeman发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
李健的粉丝团团长应助Hui采纳,获得10
16秒前
16秒前
jinsijia发布了新的文献求助10
17秒前
18秒前
自觉冰巧完成签到,获得积分10
18秒前
19秒前
22秒前
22秒前
xdli发布了新的文献求助10
22秒前
jinggaier完成签到 ,获得积分10
23秒前
23秒前
24秒前
无极微光应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737