Real-Time Passive Seismic Interferometry with Deep Transfer Learning

干涉测量 遥感 地质学 计算机科学 学习迁移 人工智能 光学 物理
作者
Liyun Ma,Liguo Han,Qiang Feng,Xin Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3365688
摘要

The passive seismic interferometry, harnessing ambient noise or unconventional seismic sources, has garnered widespread attention in the fields of Earth science and resource exploration. Conventional seismic interferometry requires several assumptions to be satisfied, including uniform distribution of subsurface sources, an adequate number of sources, and long recording periods. However, these assumptions often fall short in real-world scenarios, leading to suboptimal reconstruction quality and subsequently impacting imaging results. Therefore, we propose a passive seismic interferometry method with deep transfer learning. This method can extract real-time empirical Green’s functions directly from noisy datasets without prior preprocessing. Crucially, this technique extends beyond mere data retrieval, demonstrating the competence to robustly reconstruct the entire wavefield. We establish a joint Transformer-CNN network and conduct supervised training on intricate velocity models. Subsequently, we employ transfer learning to fine-tune the model, adapting it to new data that differ from the training dataset. Notably, our method requires only a small amount of data and can be applied to other velocity models without additional training for new neural networks. The validity of our method is demonstrated through a series of numerical experiments. In contrast to conventional method, the real-time passive seismic interferometry achieves enhanced efficiency and greater accuracy in reconstructing subsurface structural response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nana发布了新的文献求助30
刚刚
万能图书馆应助Dolphin采纳,获得10
1秒前
正直的念梦完成签到,获得积分10
2秒前
2秒前
阳光桐完成签到,获得积分10
2秒前
3秒前
3秒前
wst发布了新的文献求助10
4秒前
赵琼珍发布了新的文献求助10
4秒前
贵哥发布了新的文献求助10
5秒前
6秒前
6秒前
曲终人散完成签到,获得积分10
6秒前
Archer发布了新的文献求助10
6秒前
唐泽雪穗应助大漠谣采纳,获得10
7秒前
搜集达人应助bee采纳,获得10
7秒前
7秒前
7秒前
贪玩阑香完成签到,获得积分10
8秒前
Xiaofeng完成签到,获得积分10
8秒前
8秒前
温暖的沛凝完成签到 ,获得积分10
9秒前
Zx_1993应助小鲤鱼本鱼采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
AliHamid发布了新的文献求助30
11秒前
又又发布了新的文献求助10
12秒前
12秒前
12秒前
通辽小判官完成签到,获得积分10
13秒前
外向万声完成签到,获得积分10
13秒前
quan发布了新的文献求助10
13秒前
Archer完成签到,获得积分20
14秒前
ling完成签到,获得积分10
14秒前
NexusExplorer应助赵琼珍采纳,获得10
14秒前
余淮完成签到,获得积分10
14秒前
wst完成签到,获得积分20
15秒前
Yao完成签到,获得积分10
15秒前
李萌萌完成签到 ,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911665
求助须知:如何正确求助?哪些是违规求助? 4187116
关于积分的说明 13002794
捐赠科研通 3954954
什么是DOI,文献DOI怎么找? 2168516
邀请新用户注册赠送积分活动 1186997
关于科研通互助平台的介绍 1094256