Real-Time Passive Seismic Interferometry with Deep Transfer Learning

干涉测量 遥感 地质学 计算机科学 学习迁移 人工智能 光学 物理
作者
Liyun Ma,Liguo Han,Qiang Feng,Xin Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3365688
摘要

The passive seismic interferometry, harnessing ambient noise or unconventional seismic sources, has garnered widespread attention in the fields of Earth science and resource exploration. Conventional seismic interferometry requires several assumptions to be satisfied, including uniform distribution of subsurface sources, an adequate number of sources, and long recording periods. However, these assumptions often fall short in real-world scenarios, leading to suboptimal reconstruction quality and subsequently impacting imaging results. Therefore, we propose a passive seismic interferometry method with deep transfer learning. This method can extract real-time empirical Green’s functions directly from noisy datasets without prior preprocessing. Crucially, this technique extends beyond mere data retrieval, demonstrating the competence to robustly reconstruct the entire wavefield. We establish a joint Transformer-CNN network and conduct supervised training on intricate velocity models. Subsequently, we employ transfer learning to fine-tune the model, adapting it to new data that differ from the training dataset. Notably, our method requires only a small amount of data and can be applied to other velocity models without additional training for new neural networks. The validity of our method is demonstrated through a series of numerical experiments. In contrast to conventional method, the real-time passive seismic interferometry achieves enhanced efficiency and greater accuracy in reconstructing subsurface structural response.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
1秒前
0009987完成签到,获得积分10
1秒前
1秒前
ding应助月不笑采纳,获得10
1秒前
suohaiyun发布了新的文献求助10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
小宋发布了新的文献求助10
2秒前
大个应助科研通管家采纳,获得30
2秒前
吃人陈发布了新的文献求助10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
liuchengrui应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
kagaminelen完成签到,获得积分10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
mengtingmei应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
xdd完成签到,获得积分10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
卤味狮子头完成签到,获得积分10
3秒前
田様应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791