作者
Mohammad Shohel,A. Kirstin Sockwell,Amy E. Hixon,May Nyman
摘要
Spent nuclear fuel (SNF) contains transuranic and lanthanide species, which are sometimes recovered and repurposed. One particularly problematic fission product, 99TcO4-, hampers this recovery via coextraction with high valence metals, perhaps by complexation during aqueous reprocessing of SNF. There is limited molecular-level knowledge concerning the coordination chemistry between TcO4- or its well-known surrogate ReO4- and transuranic/lanthanide species. In the current study, we investigated the coordination of ReO4-/TcO4- with plutonium and cerium cations by structural and chemical characterization of a series of isolated extended solids. In this study, Ce represents both trivalent lanthanides and is considered a surrogate for Pu, respectively, in its common trivalent and tetravalent oxidation states. The structural elucidation of the seven isolated crystalline solids revealed that ReO4-/TcO4- directly connects to PuIV, PuVIO22+, CeIII, and CeIV in the terminal and bridging coordination modes, leading to 1-, 2-, and 3-dimensional frameworks. For example, ReO4- coordination to Pu(IV) formed a 1D chain or 2D framework, isostructural with previously isolated Th(IV) compounds. However, PuVIO22+ alternating with ReO4- led to a unique 1D chain, different from the prior-reported U(VI)/Np(VI)-ReO4-/TcO4- structures. Coordination of ReO4-/TcO4- with Ce(III) promotes the assembly of 3D frameworks. Finally, attempted synthesis of a Ce(IV)-ReO4- compound resulted in a 2D framework with a mixed-valence CeIII/IV. The highly acidic reaction conditions supported the reduction of both CeIV and TcVII, challenging isolation of compounds featuring these species. Only one TcO4-containing structure was obtained in this study (CeIII-TcO4 3D framework), vs the six total Ce/Pu-ReO4 compounds. Our three Pu-ReO4 crystal structures are the first reported and translated to atomic-level information about Pu-TcO4 coordination in nuclear fuel reprocessing scenarios, in addition to broadening our knowledge of bonding trends in the early, high-valence actinides.