EEGProgress: A fast and lightweight progressive convolution architecture for EEG classification

计算机科学 卷积神经网络 脑电图 卷积(计算机科学) 模式识别(心理学) 人工智能 特征提取 特征(语言学) 排列(音乐) 深度学习 人工神经网络 语言学 心理学 哲学 物理 精神科 声学
作者
Zhige Chen,Rui Yang,Mengjie Huang,F. Li,Guoping Li,Zidong Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:169: 107901-107901
标识
DOI:10.1016/j.compbiomed.2023.107901
摘要

Because of the intricate topological structure and connection of the human brain, extracting deep spatial features from electroencephalograph (EEG) signals is a challenging and time-consuming task. The extraction of topological spatial information plays a crucial role in EEG classification, and the architecture of the spatial convolution greatly affects the performance and complexity of convolutional neural network (CNN) based EEG classification models. In this study, a progressive convolution CNN architecture named EEGProgress is proposed, aiming to efficiently extract the topological spatial information of EEG signals from multi-scale levels (electrode, brain region, hemisphere, global) with superior speed. To achieve this, the raw EEG data is permuted using the empirical topological permutation rule, integrating the EEG data with numerous topological properties. Subsequently, the spatial features are extracted by a progressive feature extractor including prior, electrode, region, and hemisphere convolution blocks, progressively extracting the deep spatial features with reduced parameters and speed. Finally, the comparison and ablation experiments under both cross-subject and within-subject scenarios are conducted on a public dataset to verify the performance of the proposed EEGProgress and the effectiveness of the topological permutation. The results demonstrate the superior feature extraction ability of the proposed EEGProgress, with an average increase of 4.02% compared to other CNN-based EEG classification models under both cross-subject and within-subject scenarios. Furthermore, with the obtained average testing time, FLOPs, and parameters, the proposed EEGProgress outperforms other comparison models in terms of model complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研木头人完成签到 ,获得积分10
1秒前
wangrblzu应助努力做科研采纳,获得10
1秒前
ZZzz完成签到,获得积分10
2秒前
2秒前
2秒前
搜集达人应助env采纳,获得10
2秒前
2秒前
木头人重新开启了牛牛文献应助
3秒前
3秒前
4秒前
快点毕业完成签到,获得积分20
4秒前
4秒前
5秒前
zzz发布了新的文献求助10
5秒前
6秒前
wardell发布了新的文献求助10
6秒前
6秒前
艳阳天发布了新的文献求助10
7秒前
7秒前
8秒前
西红柿完成签到,获得积分0
8秒前
科研通AI5应助Lina采纳,获得10
9秒前
10秒前
蟹蟹发布了新的文献求助10
10秒前
Ice_zhao完成签到,获得积分10
10秒前
小北笙er发布了新的文献求助10
10秒前
王陈龙发布了新的文献求助10
11秒前
轻松的澜完成签到,获得积分20
11秒前
12秒前
13秒前
13秒前
万能图书馆应助小苹果采纳,获得10
15秒前
16秒前
16秒前
AgentCooper发布了新的文献求助10
16秒前
香蕉觅云应助科研通管家采纳,获得30
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得30
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769147
求助须知:如何正确求助?哪些是违规求助? 3314193
关于积分的说明 10171062
捐赠科研通 3029255
什么是DOI,文献DOI怎么找? 1662296
邀请新用户注册赠送积分活动 794827
科研通“疑难数据库(出版商)”最低求助积分说明 756421