Multi-view Contrastive Learning Network for Recommendation

计算机科学 图形 推荐系统 知识图 人工智能 协同过滤 协作学习 机器学习 情报检索 自然语言处理 理论计算机科学 知识管理
作者
Xiya Bu,Ruixin Ma
出处
期刊:Lecture Notes in Computer Science 卷期号:: 319-330
标识
DOI:10.1007/978-981-99-8546-3_26
摘要

Knowledge graphs (KGs) are being introduced into recommender systems in more and more scenarios. However, the supervised signals of the existing KG-aware recommendation models only come from the historical interactions between users and items, which will lead to the sparse supervised signal problem. Inspired by self-supervised learning, which can mine supervised signals from the data itself, we apply its contrastive learning framework to KG-aware recommendation, and propose a novel model named Multi-view Contrastive Learning Network (MCLN). Unlike previous contrastive learning methods that usually generate different views by ruining graph nodes, MCLN comprehensively considers four different views, including collaborative knowledge graph (CKG), user-item interaction graph (UIIG), and user-user graph (UUG) and item-item graph (IIG). We treat the CKG as a global-level structural view, and the other three views as local-level collaborative views. Therefore, MCLN performs contrastive learning between the four views at the local and global levels, aiming to mine the collaborative signals between users and items, between users, and between items, and the global structural information. Besides, in the construction of UUG and IIG, a receptive field is designed to capture important user-user and item-item collaborative signals. Extensive experiments on three datasets show that MCLN significantly outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QXR完成签到,获得积分10
刚刚
豆dou完成签到,获得积分10
刚刚
Dddd发布了新的文献求助10
刚刚
HCl完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
3秒前
Hollen完成签到 ,获得积分10
4秒前
慕青应助学术蠕虫采纳,获得10
5秒前
5秒前
叶子发布了新的文献求助10
6秒前
orangel完成签到,获得积分10
7秒前
半壶月色半边天完成签到 ,获得积分10
8秒前
tmpstlml发布了新的文献求助10
8秒前
9秒前
9秒前
不安饼干完成签到 ,获得积分10
11秒前
活泼的飞鸟完成签到,获得积分10
11秒前
12秒前
xuyun发布了新的文献求助10
12秒前
12秒前
zzcres完成签到,获得积分10
14秒前
eeeee完成签到 ,获得积分10
14秒前
乐观德地完成签到,获得积分10
15秒前
大个应助yf_zhu采纳,获得10
15秒前
llk发布了新的文献求助10
16秒前
一只大肥猫完成签到,获得积分10
16秒前
16秒前
18秒前
18秒前
18秒前
18秒前
科研通AI5应助GGG采纳,获得10
19秒前
19秒前
21秒前
Ann发布了新的文献求助20
21秒前
21秒前
buno应助duxinyue采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808