Multi-view Contrastive Learning Network for Recommendation

计算机科学 图形 推荐系统 知识图 人工智能 协同过滤 协作学习 机器学习 情报检索 自然语言处理 理论计算机科学 知识管理
作者
Xiya Bu,Ruixin Ma
出处
期刊:Lecture Notes in Computer Science 卷期号:: 319-330
标识
DOI:10.1007/978-981-99-8546-3_26
摘要

Knowledge graphs (KGs) are being introduced into recommender systems in more and more scenarios. However, the supervised signals of the existing KG-aware recommendation models only come from the historical interactions between users and items, which will lead to the sparse supervised signal problem. Inspired by self-supervised learning, which can mine supervised signals from the data itself, we apply its contrastive learning framework to KG-aware recommendation, and propose a novel model named Multi-view Contrastive Learning Network (MCLN). Unlike previous contrastive learning methods that usually generate different views by ruining graph nodes, MCLN comprehensively considers four different views, including collaborative knowledge graph (CKG), user-item interaction graph (UIIG), and user-user graph (UUG) and item-item graph (IIG). We treat the CKG as a global-level structural view, and the other three views as local-level collaborative views. Therefore, MCLN performs contrastive learning between the four views at the local and global levels, aiming to mine the collaborative signals between users and items, between users, and between items, and the global structural information. Besides, in the construction of UUG and IIG, a receptive field is designed to capture important user-user and item-item collaborative signals. Extensive experiments on three datasets show that MCLN significantly outperforms state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JIE完成签到,获得积分10
1秒前
1秒前
顺利完成签到,获得积分10
2秒前
思无邪完成签到 ,获得积分10
4秒前
keke发布了新的文献求助10
5秒前
李爱国应助整齐凌萱采纳,获得10
5秒前
8秒前
受伤翠容完成签到,获得积分10
8秒前
9秒前
11秒前
11秒前
小二郎应助搞怪的流沙采纳,获得10
11秒前
Jasper应助www www12采纳,获得10
12秒前
研友_VZG7GZ应助一所悬命采纳,获得10
13秒前
最好的发布了新的文献求助10
14秒前
小二郎应助呆萌的天宇采纳,获得10
16秒前
小涂大大发布了新的文献求助10
17秒前
整齐凌萱发布了新的文献求助10
17秒前
17秒前
JIE发布了新的文献求助10
19秒前
汉堡包应助哈哈哈采纳,获得10
19秒前
19秒前
YY发布了新的文献求助10
21秒前
成就小蜜蜂完成签到,获得积分20
22秒前
葉鳳怡完成签到 ,获得积分10
22秒前
22秒前
LXZ完成签到,获得积分10
23秒前
24秒前
斯文败类应助自由白山采纳,获得10
24秒前
呆萌的天宇完成签到,获得积分10
24秒前
25秒前
英俊的铭应助小涂大大采纳,获得10
25秒前
jhx完成签到,获得积分10
25秒前
温敏应助葡挞采纳,获得10
25秒前
26秒前
26秒前
wanliduxing给wanliduxing的求助进行了留言
26秒前
斯文败类应助起风了采纳,获得10
27秒前
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139002
求助须知:如何正确求助?哪些是违规求助? 2789909
关于积分的说明 7793227
捐赠科研通 2446337
什么是DOI,文献DOI怎么找? 1301061
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096